Подобные треугольники

Подобные треугольники это треугольники, у которых все три угла равны, а все стороны одного треугольника в одно и то же число раз длиннее (или короче) сторон другого треугольника, то есть треугольники подобны если их углы равны, а сходственные стороны пропорциональны.

Сходственные стороны это стороны двух треугольников, лежащие против равных углов.

Рассмотрим два треугольника ABC и A1B1C1, у которых A = A1, B = B1, C = C1:

подобные треугольники

Стороны AB и A1B1, BC и B1C1, CA и C1A1, лежащие напротив равных углов, называются сходственными сторонами. Следовательно, отношения сходственных сторон равны:

AB = BC = AC = k,
A1B1 B1C1 A1C1

k это коэффициент подобия ( число, равное отношению сходственных сторон подобных треугольников). Если k = 1, то треугольники равны, то есть равенство треугольников это частный случай подобия.

Подобие треугольников обозначается знаком ~: ABC ~ A1B1C1.

Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Если обозначить площади двух подобных треугольников буквами S и S1, то:

S = k2.
S1

Первый признак подобия треугольников

Если два угла одного треугольника равны двум углам другого, то треугольники подобны.

Первый признак подобия треугольников

Если A = A1, C = C1,

то ABC ~ A1B1C1.

Второй признак подобия треугольников

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то треугольники подобны.

Второй признак подобия треугольников

Если AB = AC , A = A1,
A1B1 A1C1
то ABC ~ A1B1C1.

Третий признак подобия треугольников

Если три стороны одного треугольника пропорциональны трём сходственным сторонам другого, то треугольники подобны.

Третий признак подобия треугольников

Если AB = BC = AC ,
A1B1 B1C1 A1C1
то ABC ~ A1B1C1.
Оцените статью
exam-ans.ru
Добавить комментарий