Скорость света в вакууме

В физике принято за аксиому, что скорость распространения света — величина постоянная (константа) с конечным значением приблизительно в 300000 км/с. Обозначается она буквой «с» и не может быть превышена в существующей концепции мироздания. Почему так случилось, и как к этому пришли ученые, расскажем ниже.

Чтобы определить скорость любого объекта, сначала необходимо точно определить его характеристики и выяснить, что нас интересует на самом деле. Если рассматривать физическое тело, то его скорость можно определять исходя из разных характеристик. Если рассматривать тело, как материальную точку, то интересным будет только центр масс, если принять во внимание размеры, то нужно изучать движение каждой точки на поверхности и в массиве вещества. Сложности возникают, если тело при движении по прямой еще и вращается, или совершает колебательные движения. В этом случае определить скорость каждого атома вещества в определенный момент будет очень сложно.

Какое отношение это имеет к свету и его распространению в пространстве? Чтобы узнать, чему равна скорость света в физике, нужно выяснить, что же такое свет, и что именно перемещается от источника к наблюдателю. Если в случае с материальным телом относительно несложно найти центр масс, или выбрать конкретную точку на поверхности, или в объеме и маркировать ее, то в случае с такой эфемерной субстанцией, как свет, сделать это очень сложно. Сейчас попытаемся объяснить почему.

С точки зрения обычного человека, свет — это обычное природное явление, позволяющее видеть различные предметы вокруг. Есть самостоятельные источники света — нагретые вещества, солнце, звезды, лампочки, светодиоды. Есть другие источники, отражающие свет — рефлекторы фонариков, зеркала, Луна, водная гладь. Для пользования светом нет необходимости углубляться в тайны его строения и происхождения.

Для физика свет — это одна из самых сложных загадок мироустройства, над изучением которых ученые работают  уже несколько сотен лет и пока только приоткрыли завесу тайны. Для инженера свет — это определенная часть спектра электромагнитного излучения, которая воспринимается глазами человека. По своей природе свет ничем не отличается от других электромагнитных волн, поэтому, определяя, чему равняется скорость света, мы должны понимать, что с такой же скоростью перемещаются и другие виды излучения, например, радиоволны, переносящие телевизионный и радиосигнал.

Впервые электричество и магнетизм увязал в один комплекс Джеймс Клерк Максвелл, который, по словам Альберта Эйнштейна, этим открытием «навсегда изменил мир», по крайней мере, в умах физиков. Теорию Максвелла о природе света блестяще подтвердил Генрих Герц, но уже после смерти ученого. Случилось это в 1880 году, который можно считать началом изучения света, как электромагнитной волны.

После многочисленных экспериментов ученые установили, что область видимого света ограничена довольно узкой частью спектра — от 380 до 750 нм (10-9м). Это соответствует расстоянию от фиолетового до красного цвета в палитре. Расположившиеся между ними цвета обладают другими частотами и длинами волны. Зачем это нужно знать? Для того чтобы понять, что свет неоднороден. Если определять скорость света в вакууме км в час (км/ч), то обязательно нужно уточнять, рассматривается белый свет (аналог материальной точки в случае с физическим телом), или каждая отдельная длина волны.

спектр света на полу

Радужный спектр на деревянном полу

В случае со светом это очень важно, потому, что при  изучении его распространения физики рассматривают две составляющих — групповую и фазовую скорость. Что это такое, мы уточним ниже, после того, как выясним более подробно, что же такое свет.

Толстостенное смотровое окно лаборатории вакуумной камеры

Толстостенное смотровое окно лаборатории вакуумной камеры

Рассмотрение света, как электромагнитной волны, закончим информацией о том, что некоторые люди могут видеть за пределами фиолетовой и красной части спектра. Эти зоны называются ультрафиолетовой и инфракрасной. Излучение этих пограничных областей спектра распространяется по тем же законам, что и видимый свет. То есть, геометрическая оптика работает и здесь. Это же касается и рентгеновского излучения, которое никто не называет светом, но по сути, это одно и то же.

Измеряя скорость света в метрах в секунду (м/с) ученые одновременно находят скорость перемещения любого электромагнитного излучения, находящегося в пределах частот от нуля до бесконечного количества Герц. Ученый Элефтериос Гулильмакис из Института квантовой оптики в Германии выразился так «с точки зрения физики, никакой разницы между светом и другими видами электромагнитного излучения нет, все описывается одними и теми же уравнениями и математикой».

Но движемся дальше, как луч света в вакууме. После активизации интереса к природе электромагнитного излучения со стороны многих ученых появились вполне резонные возражения — свет во многих случаях  ведет себя не как волна, а как поток частиц. Об этом говорил еще Исаак Ньютон, задолго до Максвелла, исследуя прямолинейное распространение света, преломление в призмах и отражение от плоских поверхностей.

Но в 1801 году Томас Юнг выполнил свой простой, но наглядный эксперимент с двойной оптической щелью, доказавший что свет, все же волна (интерференция и дифракция свойственна только волнам). Такие противоречия в определении природы света длились до 1900 года, когда Макс Планк определил, что свет излучается как волна, но не непрерывно, а порциями, так называемыми квантами, или фотонами. Теорию Планка подтвердили исследования еще одного выдающегося ученого — Альберта Эйнштейна. Ими созданы ряд уравнений, которые описывают поведение света и как волны, и как частицы.

Такая двойная природа видимого света несколько усложняет процесс определения его скорости, как в вакууме, так и в других прозрачных средах.  История о том, как вычислили скорость света достаточно сложная, но, безусловно, интересная, учитывая то, что занимались проблемой и астрономы, и физики-теоретики, и всемирно известные экспериментаторы.

Величина скорости света, принятая сейчас за константу, 299792458 м/с возникла не просто так. Путь к точному вычислению был долгим и трудным. Хотя во времена алхимиков, философов и других мыслящих людей Средних и более древних веков о скорости света задумывались мало, считалось аксиомой, что свет распространяется мгновенно. Во времена, когда скорость полета стрелы, арабского скакуна и сокола были величинами значительными, о возможности измерения параметров распространения света никто и не задумывался.

Первым попробовал определить скорость света попробовал Галилео Галилей. Теоретически он разработал методику эксперимента, в котором предполагалось открывать фонарь, расположенный на расстоянии в несколько миль от наблюдателя, и фиксировать время на часах фонарщика и ученого. Зная расстояние и разницу во времени, легко вычислить скорость. Но даже гений Галилей не мог предположить, с какими огромными числами придется работать. Неизвестно, пытался ли он реализовать замысел, но его явно ждала неудача — таких точных хронометров, чтобы заметить разницу во времени в те времена еще не было.

Теперь мы знаем, в чем измеряется скорость света, это сотни тысяч километров в секунду. О масштабах скорости Галилей, да и много его последователей могли только догадываться. Но уже в 1676 году Олаф Ремер понял, что масштабы реально космические. Для измерения он использовал уже известные данные о расстоянии от Земли до Юпитера. Идея повторяла замысел Галилея, но в качестве фонаря он использовал отраженных от Юпитера свет, а в качестве заслонки — спутники планеты гиганта.

Ученый заметил, что когда Юпитер ближе всего к Земле и дальше всего (орбита эллиптическая), то время между затмениями спутников отличается. Ремер предположил, что происходит так из-за конечности скорости света (по тем временам смелое, можно сказать, революционное предположение). После наблюдений и вычислений был получен результат — 214000 км/с. О точности измерения судить не будем — приборы того времени не могли позволить большего. Но главное было сделано — определен порядок величины. Ученые поняли, что скорость огромная. Осталось только уточнить цифры.

Удалось это сделать только в 1728 году, когда Джеймс Брэдли исследовал аберрацию звезд (изменение положения звезды на небе из-за движения Земли по орбите). Наблюдение велось на протяжении года за одной из звезд созвездия Дракона. Результат получился впечатляющим — 301000 км/с. Учитывая расстояния, с которыми оперировал астроном, состояние материально-технической базы и уровень математики того времени, можно только поразится точности измерений.

Но физики не остановились на этом, ученый Арман Физо разработал свой метод определения скорости светового луча. Эксперимент провели в 1849 году. Суть его состояла в использовании отраженного луча от зеркала на расстоянии в 8 км. Луч проходил между лопастями колеса, вращающегося с огромной скоростью. По мере увеличения скорости вращения замерялось время появления луча в зазоре. Расчетная скорость получилась в 315 000 км/с.

Методику эксперимента улучшил Леон Фуко, использовавший вместо зубчатого колеса вращающееся зеркало. Он получил результат в 298 000 км/с. Такие числа не давали покоя теоретикам, которые стремятся все обосновать с помощью математики. Только после появления теории электромагнитного излучения Максвелла, это удалось сделать. Физики-теоретики Вебер и Кольрауш в 1857 году рассчитали скорость света, учитывая величины магнитной и электрической проницаемости разных веществ. У них скорость получилась 299788 км/с. Позже эта величина была подтверждена другими физиками и считалась самой точной для вакуума.

Улучшить результат удалось только в 1958 году, когда ученый Фрум получил результат в 299792.5 км/с. В эксперименте он использовал новейшие интерферометры и электрооптические затворы, неизвестные в начале ХХ столетия. Эволюция измерения скорости света выглядит так:

Дата эксперимента Автор эксперимента (вычисления) Метод определения Результат, км/с Погрешность
1676 Олаф Ремер Наблюдение за спутниками Юпитера 214 000
1726 Джеймс Бредли Наблюдение аберрации звезд 301000
1849 Арман Физо Эксперимент с зубчатым колесом 315000
1862 Леон Фуко Эксперимент с зеркалом 298000 +500
1879 Альберт Михельсон Вращающееся зеркало 299 910 +50
1958 К.Д.Фрум радиоинтерферометр 299792,5 +0,01
1983 CGPM (конференция мер и весов) Обобщенное значение, принятое за  максимально точное. 299 792.458 0

Сейчас сказать точно, кто вычислил скорость света, очень сложно — это коллективный труд множества ученых, которые посвятили годы жизни для уточнения полученных еще в 17 столетии результатов вычислений.

Что такое скорость света простыми словами сказать сложно. Если исходить из того, что наблюдателя интересует только время, которое проходит от излучения фотона до его фиксации наблюдателем, то можно экстраполировать явление перемещения света на движение материальной точки. Но в процессе движения электромагнитной волны происходит множество более интересных явлений.

Белый свет, то есть, пакет электромагнитных волн, которые мы воспринимаем как белый цвет, состоит из волн разной длины и частоты. Они движутся с разной скоростью, которая определяется частотой и амплитудой кванта (связанной с энергией). Волна — это сложное колебательное движение электромагнитного поля. Фазовая скорость принимает во внимание только колебания в направлении вектора перемещения, игнорируя другие направления.

Если рассматривать колебания в категориях квантовой механики, то фазовая скорость может значительно отличаться от «С», превосходить ее и даже становиться отрицательной. Это предмет изучения квантовой физики и на реальную скорость света в воздухе в км/час влияния не оказывает. Здесь более важна групповая скорость, то есть скорость пакета волн, в максимальном приближении напоминающая движение отдельно взятой частицы с волновыми свойствами.

Любая плотная среда оказывает сопротивление перемещению фотонов. Это происходит на микроуровне, в результате обмена энергий частиц и междуорбитальных переходов. Так или иначе, свет в прозрачной среде замедляется. Формула скорости света в воздухе и других веществах очень проста: v = c / n.

  • V – скорость света в плотной среде,
  • C — скорость света в вакууме,
  • n — коэффициент преломления.

Коэффициент n зависит от плотности материала и находится в диапазоне от 1 до 5, то есть свет в веществе может замедлиться в несколько раз. При использовании световой волны как носителя информации, такую задержку обязательно учитывают. Даже в вакууме, конечность скорости света может вызывать определенные сложности.

Например, сигнал от космических зондов может задерживаться на  несколько минут, или часов, если аппарат находится на дальних рубежах Солнечной системы, или даже за ними. Если использовать стекловолоконный кабель, опоясывающий землю, то задержка сигнала будет составлять около 0,2 с. Для многих компьютерных систем — это слишком большая, практически недопустимая величина.

Точное вычисление скорости света, как в вакууме, так и внутри прозрачных веществ имеет огромное  значение, как для практического использования электромагнитных волн видимого и невидимого спектра, так и для понимания реальной картины мироздания.

Оцените статью
exam-ans.ru
Добавить комментарий