Сложение и вычитание одночленов

Сложить одночлены или вычесть один одночлен из другого можно только в том случае, если одночлены являются подобными. Если одночлены не подобные, в этом случае сложение одночленов можно записать в виде суммы, а вычитание в виде разности.

Подобные одночлены

Подобные одночлены одночлены, которые состоят из одних и тех же букв, но могут иметь разные или одинаковые коэффициенты (числовые множители). Одинаковые буквы в подобных одночленах должны иметь одинаковые показатели степени. Если у одной и той же буквы в разных одночленах степени не совпадают, то такие одночлены нельзя назвать подобными:

5ab2 и -7ab2 подобные одночлены,

5a2b и 5ab не подобные одночлены.

Обратите внимание, что последовательность букв в подобных одночленах может не совпадать. Также одночлены могут быть представлены в виде выражения, которое можно упростить. Поэтому, прежде чем приступать к определению, подобны ли данные одночлены, или нет, стоит привести одночлены к стандартному виду. Например, возьмём два одночлена:

5abb и -7b2a.

Оба одночлена находятся в нестандартном виде, поэтому будет нелегко определить, являются ли они подобными. Чтобы это узнать, приведём одночлены к стандартному виду:

5ab2 и -7ab2.

Теперь сразу видно, что данные одночлены являются подобными.

Два подобных одночлена, отличающиеся только знаком, называются противоположными. Например:

5a2bc и -5a2bc противоположные одночлены.

Приведение подобных одночленов это упрощение выражения, содержащего подобные одночлены, путём их сложения. Сложение подобных одночленов производится по правилам приведения подобных слагаемых.

Сложение одночленов

Чтобы сложить одночлены, надо:

  1. Составить сумму, записав все слагаемые одно за другим.
  2. Привести все одночлены к стандартному виду.
  3. Раскрыть скобки, если они есть в выражении.
  4. Привести подобные слагаемые. Для этого нужно:
    1. сложить их численные множители,
    2. после получившегося коэффициента дописать буквенные множители без изменений.

Пример 1. Сложить одночлены 12ab, -4a2b и -5ab.

Решение: Составим сумму одночленов:

12ab + (-4a2b) + (-5ab).

Все одночлены находятся в стандартном виде. Значит, можно приступить к раскрытию скобок. Правила раскрытия скобок смотрите тут.

12ab — 4a2b — 5ab.

Теперь надо определить, есть ли среди слагаемых подобные одночлены и, если они есть, сделать приведение:

12ab — 4a2b — 5ab = (12 + (-5))ab — 4a2b = 7ab — 4a2b.

Пример 2. Сложить одночлены 5a2bc и -5a2bc.

Решение: Составим сумму одночленов:

5a2bc + (-5a2bc).

Раскроем скобки:

5a2bc — 5a2bc.

Эти два одночлена являются противоположными, то есть, отличаются только знаком. Значит, если мы сложим их численные множители, то получим нуль:

5a2bc — 5a2bc = (5 — 5)a2bc = 0a2bc = 0.

Следовательно, при сложении противоположных одночленов в результате получается нуль.

Общее правило сложения одночленов:

Чтобы сложить несколько одночленов, следует записать все слагаемые одно за другим с сохранением их знаков, отрицательные одночлены надо заключить в скобки и сделать приведение подобных слагаемых (подобных одночленов).

Вычитание одночленов

Чтобы произвести вычитание одночленов, надо:

  1. Составить разность, записав все одночлены один за другим, разделяя их знаком — (минус).
  2. Привести все одночлены к стандартному виду.
  3. Раскрыть скобки, если они есть в выражении.
  4. Сделать приведение подобных одночленов, то есть:
    1. сложить их численные множители,
    2. после получившегося коэффициента дописать буквенные множители без изменений.

Пример. Найти разность одночленов 8ab2, -5a2b и -ab2.

Решение: Составим разность одночленов:

8ab2 — (-5a2b) — (-ab2).

Все одночлены находятся в стандартном виде. Значит, можно приступить к раскрытию скобок. Правила раскрытия скобок смотрите тут.

8ab2 + 5a2b + ab2.

Теперь надо определить, есть ли среди одночленов подобные и, если они есть, сделать приведение:

8ab2 + 5a2b + ab2 = (8 + 1)ab2 + 5a2b = 9ab2 + 5a2b.

Общее правило вычитания одночленов:

Для вычитания одного одночлена из другого следует к уменьшаемому одночлену приписать вычитаемый одночлен с противоположным знаком и сделать приведение подобных одночленов.

Оцените статью
exam-ans.ru
Добавить комментарий