Для чего вводится система отсчёта в физике?

По характеру решаемых задач механику делят на кинематику и динамику. Первое, что бросается в глаза при наблюдении окружающего нас мира, — это его изменчивость. Мир не является застывшим, статичным. Изменения в нём весьма разнообразны.

Но если спросить вас, какие изменения вы замечаете чаще всего, то ответ, пожалуй, будет однозначным: изменяется положение предметов (или тел, как говорят физики) относительно земли и относительно друг друга с течением времени.

Содержание
  1. Пространство и время
  2. Кинематика. Механическое движение. Система отсчета. Материальная точка. Траектория. Путь
  3. Система отсчёта в физике и механике — что это, понятие и виды
  4. Основные составляющие
  5. Основные свойства
  6. Виды систем отсчёта
  7. Инерциальные системы отсчёта
  8. Неинерциальные системы отсчёта
  9. Система отсчета в физике – что это такое: определение, какие бывают системы и что они включают в себя
  10. Определение
  11. Виды систем отсчета
  12. Инерциальная и неинерциальная
  13. Система центра масс и лабораторная
  14. Относительность движения
  15. Вывод
  16. Система отсчёта это Что такое Система отсчёта?
  17. Другие определения
  18. Относительность движения
  19. Абсолютная система отсчёта
  20. Механическое движение и его относительность. Система отсчета
  21. Относительность механического движения и понятие системы отсчета
  22. Немного об относительности скорости
  23. Механическое движение
  24. Относительность механического движения
  25. Материальная точка
  26. Система отсчёта
  27. Относительность движения и система отсчета в физике
  28. Система отсчета

Пространство и времяСистема отсчёта в физике и механике — что это, понятие и виды

Бежит ли собака, или мчится автомобиль — с ними происходит один и тот же процесс: их положение относительно земли и относительно вас изменяется с течением времени. Они перемещаются. Сжимается пружина, прогибается доска, на которую вы сели, — изменяется положение различных частей тела относительно друг друга.

Изменение положения тела или частей тела в пространстве относительно других тел с течением времени называется механическим движением.

Определение механического движения выглядит просто, но простота эта обманчива. Прочтите определение ещё раз и подумайте, все ли слова вам ясны: пространство, время, относительно других тел. Скорее всего, эти слова требуют пояснения.

Пространство и время — наиболее общие понятия физики и наименее ясные.

Исчерпывающих сведений о пространстве и времени мы не имеем. Но и те результаты, которые получены сегодня, изложить в самом начале изучения физики невозможно.

Обычно нам вполне достаточно уметь измерять расстояние между двумя точками пространства с помощью линейки и интервалы времени с помощью часов. Линейка и часы — важнейшие приспособления для измерений в механике, да и в быту. С расстояниями и интервалами времени приходится иметь дело при изучении многих явлений во всех областях науки.

«Относительно других тел».

Если эта часть определения механического движения ускользнула от вашего внимания, то вы рискуете не понять самого главного. Например, в купе вагона на столике лежит яблоко. Во время отправления поезда двух наблюдателей (пассажира и провожающего) просят ответить на вопрос: яблоко движется или нет?

Каждый наблюдатель оценивает положение яблока по отношению к себе. Пассажир видит, что яблоко находится на расстоянии 1 м от него и это расстояние сохраняется с течением времени. Провожающий на перроне видит, как с течением времени расстояние от него до яблока увеличивается.

Пассажир отвечает, что яблоко не совершает механического движения — оно неподвижно, провожающий говорит, что яблоко движется.

Закон относительности движения: Характер движения тела зависит от того, относительно каких тел мы рассматриваем данное движение.

Приступим к изучению механического движения. Человечеству понадобилось около двух тысяч лет, чтобы встать на верный путь, который завершился открытием законов механического движения.

Попытки древних философов объяснить причины движения, в том числе и механического, были плодом чистой фантазии.

Подобно тому, рассуждали они, как утомлённый путник ускоряет шаги по мере приближения к дому, падающий камень начинает двигаться всё быстрее и быстрее, приближаясь к матери-земле.

Движения живых организмов, например кошки, казались в те времена гораздо более простыми и понятными, чем падение камня. Были, правда, и гениальные озарения. Так, греческий философ Анаксагор говорил, что Луна, если бы не двигалась, упала бы на Землю, как падает камень из пращи.

Однако подлинное развитие науки о механическом движении началось с трудов великого итальянского физика Г. Галилея.

Кинематика — это раздел механики, изучающий способы описания движений и связь между величинами, характеризующими эти движения.

Описать движение тела — это значит указать способ определения его положения в пространстве в любой момент времени.

Уже на первый взгляд задача описания кажется очень сложной. В самом деле, взгляните на клубящиеся облака, колышущиеся листья на ветке дерева. Представьте себе, какое сложное движение совершают поршни автомобиля, мчащегося по шоссе. Как же приступить к описанию движения?

Самое простое (а в физике всегда идут от простого к сложному) — это научиться описывать движение точки. Под точкой можно понимать, например, маленькую отметку, нанесённую на движущийся предмет — футбольный мяч, колесо трактора и т. д. Если мы будем знать, как происходит движение каждой такой точки (каждого очень маленького участка) тела, то мы будем знать, как движется всё тело.

Однако когда вы говорите, что пробежали на лыжах 10 км, то никто не станет уточнять, какая именно часть вашего тела преодолела расстояние в 10 км, хотя вы отнюдь не точка. В данном случае это не имеет сколько- нибудь существенного значения.

Введём понятие материальной точки — первой физической модели реальных тел.

Материальная точка — тело, размерами и формой которого можно пренебречь в условиях рассматриваемой задачи.

Система отсчёта.

Движение любого тела, как мы уже знаем, есть движение относительное. Это значит, что движение данного тела может быть различным по отношению к другим телам. Изучая движение интересующего нас тела, мы обязательно должны указать, относительно какого тела это движение рассматривается.

Тело, относительно которого рассматривается движение, называется телом отсчёта.

Чтобы рассчитать положение точки (тела) относительно выбранного тела отсчёта в зависимости от времени, надо не только связать с ним систему координат, но и суметь измерить время. Время измеряют с помощью часов. Современные часы — это сложные устройства. Они позволяют измерять время в секундах с точностью до тринадцатого знака после запятой.

Естественно, ни одни механические часы такой точности обеспечить не могут. Так, одни из самых точных в стране механических часов на Спасской башне Кремля в десять тысяч раз менее точны, чем Государственный эталон времени. Если эталонные часы не корректировать, то на одну секунду они убегут или отстанут за триста тысяч лет.

Понятно, что в быту нет необходимости измерять время с очень большой точностью. Но для физических исследований, космонавтики, геодезии, радиоастрономии, управления воздушным транспортом высокая точность в измерении времени просто необходима.

От точности измерения времени зависит точность, с которой мы сумеем рассчитать положение тела в какой-либо момент времени.

Совокупность тела отсчёта, связанной с ним системы координат и часов называют системой отсчёта.

На рисунке показана система отсчёта, выбранная для рассмотрения полёта брошенного мяча. В данном случае телом отсчёта является дом, оси координат выбраны так, что мяч летит в плоскости XOY, для определения времени берётся секундомер.

Кинематика. Механическое движение. Система отсчета. Материальная точка. Траектория. Путь

Куда бы мы ни посмотрели – вокруг нас масса примеров механического движения: что-то вращается, что-то прыгает вверх-вниз, что-то движется вперед-назад, а другие тела могут находиться в состоянии покоя, которое тоже является примером механического движения, скорость которого равна нулю.

Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени.

Как физика делится на несколько разделов, так и механика имеет свои разделы. Первый из них называется кинематика. Раздел механики кинематика отвечает на вопрос, как движется тело.

Прежде чем начать работать над изучением механического движения, необходимо определить и выучить основные понятия, так называемую азбуку кинематики. На уроке мы научимся:

  • выбирать систему отсчета для изучения движения тела,
  • упрощать задачи, мысленно заменяя тело материальной точкой,
  • определять траекторию движения, находить путь,
  • различать виды движений.

В определении механического движения особое значение имеет выражение относительно других тел. Нам всегда необходимо выбрать так называемое тело отсчета, то есть тело, относительно которого мы будем рассматривать движение исследуемого нами объекта.

Простой пример: подвигайте рукой и скажите – движется ли она? Да, конечно, по отношению к голове, но по отношению к пуговице на вашей рубашке она будет недвижима. Поэтому выбор отсчета очень важен, ведь относительно некоторых тел движение совершается, а относительно других тел движения не происходит.

Чаще всего телом отсчета выбирают тело, которое всегда есть под руками, точнее под ногами, – это наша Земля, которая является телом отсчета в большинстве случаев.

Издавна ученые спорили о том, Земля ли вращается вокруг Солнца или Солнце вращается вокруг Земли.

На самом деле, с точки зрения физики, с точки зрения механического движения это всего лишь спор о теле отсчета.

Если телом отсчета считать Землю, то да – Солнце вращается вокруг Земли, если телом отсчета считать Солнце – то Земля вращается вокруг Солнца. Поэтому тело отсчета – это важное понятие. Как же описывать изменение положения тела?

Чтобы точно задать положение интересующего нас тела относительно тела отсчета, надо связать с телом отсчета систему координат.

При движении тела координаты меняются, а для того чтобы описать их изменение, нам необходим прибор для измерения времени. Чтобы описывать движение, нужно иметь:

  1. тело отсчета,
  2. связанную с телом отсчета систему координат,
  3. прибор для измерения времени (часы).

Все эти объекты составляют вместе систему отсчета. До тех пор пока мы не выбрали систему отсчета, не имеет смысла описывать механическое движение – мы не будем уверены в том, как движется тело.

Простой пример: чемодан, лежащий на полке в купе поезда, который движется, для пассажира просто покоится, а для человека, стоящего на перроне, движется.

Как мы видим, одно и то же тело и движется, и покоится, вся проблема в том, что системы отсчета различны.

Зависимость траектории от выбора системы отсчета

Ответим на интересный и важный вопрос, зависит ли форма траектории и пройденный телом путь от выбора системы отсчета. Рассмотрим ситуацию, когда есть пассажир поезда, радом с которым на столе стоит стакан с водой. Какой же будет траектория стакана в системе отчета, связанной с пассажиром (телом отсчета является пассажир)?

Конечно, относительно пассажира стакан неподвижен. Это значит, что траектория является точкой, а перемещение равно.

Какой же будет траектория стакана относительно пассажира, который ожидает поезда на перроне? Для этого пассажира будет казаться, что стакан движется по прямой линии и у него ненулевой путь.

Из вышесказанного можно сделать вывод, что траектория и путь зависят от выбора системы отсчета.

Для того чтобы описывать механическое движение, в первую очередь необходимо определиться с системой отсчета.

Движение изучается нами для того, чтобы предсказать, где окажется тот или иной объект в необходимый момент времени. Основная задача механики – определить положение тела в любой момент времени. Что же значит описать движение тела?

Рассмотрим пример: автобус едет из Москвы в Санкт-Петербург. Важны ли нам размеры автобуса по сравнению с расстоянием, которое он преодолеет?

Конечно же, размерами автобуса в данном случае можно пренебречь. Мы можем описывать автобус как одну движущуюся точку, по-другому ее называют материальной точкой.

Тело, размерами которого в данной задаче можно пренебречь, называют материальной точкой.

Одно и то же тело, в зависимости от условий задачи, может быть или не быть материальной точкой.

При перемещении автобуса из Москвы в Санкт-Петербург автобус можно считать материальной точкой, ведь его размеры несопоставимы с расстоянием между городами.

Но если в салон автобуса влетела муха и мы хотим исследовать ее движение, тогда в этом случае нам важны размеры автобуса, и он уже не будет являться материальной точкой.

Чаще всего в механике мы будем изучать именно движение материальной точки. При своем перемещении материальная точка последовательно проходит положение вдоль некоторой линии.

Линия, вдоль которой движется тело (или материальная точка), называется траекторией движения тела.

Иногда мы наблюдаем траекторию (например, процесс выставления оценки за урок), но чаще всего траектория – это какая-то воображаемая линия. При наличии средств измерения мы можем замерить длину траектории, вдоль которой двигалось тело, и определим величину, которая называется путь.

Путь, пройденный телом за некоторое время, – это длина участка траектории.

Разделяют два основных вида движения – это прямолинейное и криволинейное движение.

Если траектория тела – это прямая линия, то движение называется прямолинейным. Если тело движется по параболе или по любой другой кривой – мы говорим о криволинейном движении. При рассмотрении движения не просто материальной точки, а движения реального тела различают еще два вида движения: поступательное движение и вращательное движение.

Поступательное и вращательное движение. Пример

Какие же движения называются поступательными, а какие – вращательными? Рассмотрим этот вопрос на примере колеса обозрения. Как движется кабина колеса обозрения? Отметим две произвольные точки кабины и соединим их прямой. Колесо вращается. Через некоторое время отметим те же точки и соединим их. Полученные прямые будут лежать на параллельных прямых.

Если прямая, проведенная через любые две точки тела, при движении остается параллельной сама себе, то такое движение называют поступательным.

В противном случае мы имеем дело с вращательным движением. Если бы прямая не была параллельной сама тебе, то пассажир, скорее всего, вывалился бы из кабины колеса.

Вращательным называют такое движение тела, при котором его точки описывают окружности, лежащие в параллельных плоскостях. Прямая, соединяющая центры окружностей, называется осью вращения.

Очень часто нам приходится сталкиваться с комбинацией поступательного и вращательного движения, так называемым поступательно-вращательным движением. Самый простой пример такого движения – это движение прыгуна в воду. Он выполняет вращение (сальто), но при этом центр его масс поступательно движется в направлении воды.

Мы сегодня изучили азбуку кинематики, то есть основные, самые важные понятия, которые в дальнейшем позволят нам перейти к решению главной задачи механики – определению положения тела в любой момент времени.

Система отсчёта в физике и механике — что это, понятие и виды

С точки зрения современной физики, всякое движение можно признать относительным.

Таким образом, любое движение тела можно рассматривать исключительно по отношению к другому материальному объекту или же совокупности таких объектов.

Например, мы не можем указать, каков характер движения Луны в общем, но может определить её перемещение относительно Солнца, Земли, Звёзд, других планет и пр.

В ряде случаев подобная закономерность бывает связана не с единой материальной точкой, а с множеством базовых точек отсчёта. Эти базовые тела отсчёта могут задавать совокупность координат.

Основные составляющие

Основными составляющими любой системы отсчёта в механике можно считать следующие компоненты:

  1. Тело отсчёта – это физическое тело, по отношению к которому определяется изменение положения в пространстве других тел.
  2. Совокупность координат, которая связывается с этим телом. В этом случае она представляет собой точку отсчёта.
  3. Время – это момент начала отсчитывания времени, который необходим, чтобы определить нахождение тела в пространстве в любой момент.

Для того чтобы решить конкретную задачу, необходимо определить наиболее подходящую для этого сетку координат и структуру. Идеальные часы в каждой из них потребуются лишь одни. В этом случае начало, тело отсчёта и векторы координатных осей можно выбирать произвольно.

Это интересно: формула всемирного тяготения определение закона.

Основные свойства

Под однородностью в физике принято понимать тождественность всех точек в пространстве. Этот фактор имеет в физике немаловажное значение. Во всех точках Земли и Солнечной системы в целом законы Ньютона в физики действуют абсолютно идентично.

Благодаря этому начало отсчёта может быть размещено в любой удобной точке. И если исследователь поворачивает сетку координат вокруг начальной точки, при этом никакие другие параметры задачи не будут изменяться. Все направления, которые начинаются от этой точки, имеют абсолютно тождественные свойства. Такая закономерность называется изотропностью пространства.

Виды систем отсчёта

Существует несколько видов — подвижные и неподвижные, инерциальные и неинерциальные.

Если такая совокупность координат и времени требуется для проведения кинематических исследований, в этом случае все подобные структуры являются равноправными. Если же речь идёт о решении динамических задач, предпочтение отдаётся инерциальным разновидностям – в них движение имеет более простые характеристики.

Инерциальные системы отсчёта

Инерциальными называют такие совокупности, в которых физическое тело сохраняет состояние покоя или продолжает равномерно передвигаться, если на него не воздействуют внешние силы или суммарное воздействие этих сил равняется нулю. В этом случае на тело действует инерция, что и даёт название системе.

Существование таких совокупностей подчиняется первому закону Ньютона. Именно в таких сетках возможно наиболее простое описание движения тел.

По существу, инерциальная структура — это всего лишь идеальна математическая модель. Найти такую структуру в физическом мире не представляется возможным.

Одна и та же совокупность в одном случае может считаться инерциальной, а в другом будет признана неинерциальной. Это происходит в тех случаях, когда погрешность в результате неинерциальности слишком ничтожна и ею можно свободно пренебречь.

Неинерциальные системы отсчёта

Система отсчёта в физике и механике — что это, понятие и виды

Отличительной чертой неинерциальной системы является то, что она перемещается по отношению к инерциальной с некоторым ускорением. В этом случае законы Ньютона могут утратить свою силу и требуют введения дополнительных переменных. Без этих переменных описание такой совокупности будет недостоверным.

Проще всего рассматривать неинерциальную систему на примере. Такая характеристика движения характерна для всех тел, которые имеют сложную траекторию движения. Наиболее ярким примером такой системы можно считать вращение планет, в том числе и Земли.

Движение в неинерциальных системах отсчёта впервые изучено Коперником. Именно он доказал, что движение с участием нескольких сил может быть весьма сложным. До этого считалось, что движение Земли относится к инерциальным и описывалось оно законами Ньютона.

Система отсчета в физике – что это такое: определение, какие бывают системы и что они включают в себя

Для решения задач механики необходимо определить положение тела в пространстве. Только тогда можно будет рассматривать его движение. Для этого необходима система отсчета в физике и механике — это система координат и способ измерения времени.

Определение

Система отсчета в физике включает в себя тело отсчета, связанные с ним оси координат и прибор для измерения времени. Тело отсчета — это точка, от которой отсчитывают положение всех остальных точек. Она может быть выбрана в любом месте пространства. Иногда в качестве начальной точки выбирают несколько тел.

Что такое система координат? Она дает возможность однозначно определить положение точки относительно начальной точки. Каждой точке пространства сопоставляются числа (одно или несколько), которые откладываются на координатных осях.

Пример — шахматная доска. Каждая клетка обозначается буквой и цифрой, по одной оси идут буквы, по другой цифры. Благодаря им мы можем однозначно описать положение фигуры.

Важно! Оси обозначаются латинскими или греческими буквами. Они имеют положительное и отрицательное направление.

Наиболее распространенные в физике виды координат — это:

  • прямоугольные, или декартовы — угол между осями прямой, используются две (на плоскости) или три (в трехмерном пространстве) оси,
  • полярные — на плоскости, где в качестве координат используется расстояние от центра r и угол относительно полярной оси (полярный угол),
  • цилиндрические — расширение полярных на трехмерное пространство, добавляется ось z, перпендикулярная r и плоскости, в которой лежит полярный угол,
  • сферические — трехмерные, используются два угла и расстояние от центра, так построены географические и астрономические координаты.

Существует множество других вариантов координат. Можно переходить из одних в другие, преобразуя координаты с помощью уравнений.

Понятие системы отсчета (СО) включает прибор для измерения времени, другими словами, часы. Он необходим, чтобы рассматривать движение точки — изменение ее положения со временем.

Изменения положения точки относительно выбранной СО описываются уравнениями движения. Они показывают, как изменяется положение точки с течением времени.

Виды систем отсчета

В зависимости от того, какие задачи надо решить, можно выбрать те или иные системы отсчета.

Инерциальная и неинерциальная

СО бывают инерциальные и неинерциальные. Понятие инерциальной СО важно для кинематики — раздела физики, изучающего движение тел.

Инерциальная СО движется прямолинейно с неизменной скоростью относительно окружающих тел. Окружающие предметы на нее не воздействуют. Если она стоит на месте — это тоже частный случай равномерного прямолинейного движения. Такие СО имеют следующие свойства:

  • инерциальная СО, которая движется относительно другой инерциальной СО, также будет инерциальной,
  • все законы физики выполняются в разных ИСО одинаково и имеют одинаковую форму записи,
  • координаты и время в разных ИСО в классической механике связаны преобразованиями Галилея,
  • в специальной теории относительности вместо них пользуются преобразованиями Лоренца, а скорость не может превышать некоторую постоянную (скорость света с).

Пример инерциальной СО — гелиоцентрическая, с центром в Солнце. СО, связанная с землей, инерциальной не будет. Наша планета движется вокруг солнца криволинейно, кроме того, на нее действует гравитация Солнца.

Однако для многих задач этим ускорением и воздействием Солнца можно пренебречь. Это задачи, где «место действия» — поверхность Земли.

Например, если нам нужно найти скорость снаряда, выпущенного из пушки, влияние Солнца и вращение Земли нас не интересует.

Неинерциальная СО подвергается воздействию других предметов, поэтому движется с ускорением. К неинерциальным относятся и вращающиеся СО. В неинерциальных СО законы Ньютона не выполняются, но можно описывать перемещение теми же уравнениями, что и в ИСО, если ввести дополнительные силы.

Система центра масс и лабораторная

В механике также используется система центра масс (центра инерции), сокращенно с.ц.м. или с.ц.и. В качестве начала координат в такой СО выбирают центр масс нескольких объектов. Сумма их импульсов в такой СО равна нулю.

Применяют с.ц.и. чаще всего в задачах рассеяния. Задачи такого типа решают в механике и ядерной физике, например, это задачи о столкновении частиц в ускорителях.

В таких задачах также используют лабораторную СО. Она противоположна с.ц.и. В ЛСО положение частиц определяют относительно покоящейся мишени, на которой рассеиваются другие частицы.

Относительность движения

По современным представлениям, абсолютной СО не существует. Это значит, что рассматривать движение тел можно только по отношению к другим телам. Не имеет смысла говорить о том, что предмет «двигается вообще». Причина этого — свойства пространства и времени:

  • пространство изотропно, то есть в нем все направления равноценны,
  • пространство однородно — все точки обладают одинаковыми свойствами,
  • время однородно — нет каких-то особых моментов времени, все они равноценны.

Важно! Во времена Ньютона считалось, что можно рассматривать движение относительно абсолютного пространства, позже — относительно эфира в электродинамике Максвелла. Разработанная Эйнштейном теория относительности доказала, что абсолютного начала отсчета быть не может.

Вывод

Системы отсчета в физике необходимы, чтобы рассматривать движение тел. Их можно выбирать по-разному, как удобнее для конкретной задачи, так как движение относительно. Для механики важны инерциальные СО — те, которые движутся равномерно и прямолинейно относительно других тел.

Система отсчёта это Что такое Система отсчёта?

Система отсчёта — это совокупность тела отсчета, связанной с ним системы координат и системы отсчёта времени, по отношению к которым рассматривается движение (или равновесие) каких-либо материальных точек или тел[1][2].

Математически движение тела (или материальной точки) по отношению к выбранной системе отсчёта описывается уравнениями, которые устанавливают, как изменяются с течением времени t координаты, определяющие положение тела (точки) в этой системе отсчёта. Эти уравнения называются уравнениями движения.

Например, в декартовых координатах х, y, z движение точки определяется уравнениями , , .

В современной физике любое движение является относительным, и движение тела следует рассматривать лишь по отношению к какому-либо другому телу (телу отсчёта) или системе тел. Нельзя указать, например, как движется Луна вообще, можно лишь определить её движение, например, по отношению к Земле, Солнцу, звёздам и т. п.

Другие определения

Иногда — особенно в механике сплошных сред и общей теории относительности — систему отсчёта связывают не с одним телом, а с континуумом реальных или воображаемых базовых тел отсчёта, которые задают также систему координат. Мировые линии тел отсчёта «заметают» пространство-время и задают в таком случае конгруэнцию, относительно которой можно рассматривать результаты измерений.

Относительность движения

Относительность механического движения – это зависимость траектории движения тела, пройденного пути, перемещения и скорости от выбора системы отсчёта.

Движущиеся тела изменяют своё положение относительно других тел.

Положение автомобиля, мчащегося по шоссе, изменяется относительно указателей на километровых столбах, положение корабля, плывущего в море недалеко от берега, меняется относительно береговой линии, а о движении самолёта, летящего над землей, можно судить по изменению его положения относительно поверхности Земли.

Механическое движение — это процесс изменения относительного положения тел в пространстве с течением времени. Можно показать, что одно и то же тело может по-разному перемещаться относительно других тел.

Таким образом говорить о том, что какое-то тело движется, можно лишь тогда, когда ясно, относительно какого другого тела — тела отсчета, изменилось его положение.

Абсолютная система отсчёта

Часто в физике какую-то СО считают наиболее удобной (привилегированной) в рамках решения данной задачи — это определяется простотой расчётов либо записи уравнений динамики тел и полей в ней. Обычно такая возможность связана с симметрией задачи.

С другой стороны, ранее считалось, что существует некая «фундаментальная» система отсчёта, простота записи в которой законов природы выделяет её из всех остальных систем. Например, физики XIX в. считали что, система, относительно которой покоится эфир электродинамики Максвелла, является привилегированной, и поэтому она была названа Абсолютной Системой Отсчета (АСО).

В современных представлениях никакой системы отсчёта, выделенной именно таким способом, не существует, так как законы природы, выраженные в тензорной форме, имеют один и тот же вид во всех системах отсчёта — то есть во всех точках пространства и во все моменты времени.

Это условие — локальная пространственно-временная инвариантность — является одним из проверяемых оснований физики.

Механическое движение и его относительность. Система отсчета

Механическое движение — это изменение, происходящее с течением времени, взаимного расположения тел в пространстве.

Примером может служить движение транспортных средств, летательных аппаратов и даже колебания земной коры.

Виды механического движения:

  • поступательное механическое движение,
  • вращательное механическое движение,
  • колебательное механическое движение.

При поступательном движении все точки тела совершают одинаковые движения.

Если провести любую прямую в теле при его движении, то она останется параллельной самой себе. Например, такое движение происходит при использовании лифта. При вращательном движении точки тела будут описывать окружность.

Например, в составе генератора есть ротор, который описывает окружность относительно оси этого ротора.

При колебательном движении точки тела совершают движение, то вверх, то вниз. Этот вид движения можно рассмотреть на примере обычно пружины и груза. Для этого на пружину надо привязать груз, и она начнет совершать колебательное движение.

Относительность механического движения и понятие системы отсчета

Понятие «относительность механического движения» подразумевает, что какое-то тело может покоиться относительно одних тел, но совершать движение относительно других тел. Из-за этого важно указать, говоря, что тело движется или покоится, относительно чего рассматривается состояние. Например, лодка неподвижна относительно воды, но движется относительно берега.

Поэтому и надо указывать относительно какого тела движется или покоится предмет.

В разных системах отсчета скорости тел будут неодинаковы.

Система отсчета — это система, объединяющая тело отсчета, связанную с ними отсчета и прибор для измерения времени.

Например, если человек будет двигаться в поезде, то скорость его будет разной и зависеть будет от системы отсчета, относительно которой мы будем рассматривать движение, а именно, от системы отсчета, связанной с неподвижной Землей или от системы отсчета поезда.

Стоит отметить, что в разных системах отсчета различными будут еще и траектории движения тела. Примером могут служить капли дождя, которые на землю падают вертикально, а на окне мчащейся машины они будут оставлять след в виде косых струй.

Путь в разных системах отсчета тоже будет различным. В этом можно убедиться на примере пассажира, который сидит в автобусе. Так путь, который он проделал относительно автобуса во время поездке равен практически 0, а вот относительно Земли он преодолел сравнительно больший путь.

Немного об относительности скорости

Допустим, что в одной системе отсчета совершают движение два тела со скоростями V1 и V2. В этом случае, чтобы узнать скорость первого тела относительно второго, необходимо найти разность скоростей:

  • V1,2=V1-V2

Это справедливо только в том случае, если тела движутся в одном направлении, а вот при встречном движении необходимо скорости складывать

  • V1,2=V1+V2

Механическое движение

Механическое движение – это изменение положения тела в пространстве относительно других тел.

Например, автомобиль движется по дороге. В автомобиле находятся люди. Люди движутся вместе с автомобилем по дороге. То есть люди перемещаются в пространстве относительно дороги. Но относительно самого автомобиля люди не движутся. В этом проявляется относительность механического движения. Далее кратко рассмотрим основные виды механического движения.

Поступательное движение – это движение тела, при котором все его точки движутся одинаково.

Например, всё тот же автомобиль совершает по дороге поступательное движение. Точнее, поступательное движение совершает только кузов автомобиля, в то время как его колёса совершают вращательное движение.

Вращательное движение – это движение тела вокруг некоторой оси. При таком движении все точки тела совершают движение по окружностям, центром которых является эта ось.

Упоминавшиеся нами колёса совершают вращательное движение вокруг своих осей, и в то же время колёса совершают поступательное движение вместе с кузовом автомобиля. То есть относительно оси колесо совершает вращательное движение, а относительно дороги – поступательное.

Колебательное движение – это периодическое движение, которое совершается поочерёдно в двух противоположных направлениях. Например, колебательное движение совершает маятник в часах. Поступательное и вращательное движения – самые простые виды механического движения.

Относительность механического движения

Все тела во Вселенной движутся, поэтому не существует тел, которые находятся в абсолютном покое. По той же причине определить движется тело или нет, можно только относительно какого-либо другого тела.

Например, автомобиль движется по дороге. Дорога находится на планете Земля. Дорога неподвижна. Поэтому можно измерить скорость автомобиля относительно неподвижной дороги. Но дорога неподвижна относительно Земли. Однако сама Земля вращается вокруг Солнца.

Следовательно, дорога вместе с автомобилем также вращается вокруг Солнца. Следовательно, автомобиль совершает не только поступательное движение, но и вращательное (относительно Солнца). А вот относительно Земли автомобиль совершает только поступательное движение.

В этом проявляется относительность механического движения.

Относительность механического движения – это зависимость траектории движения тела, пройденного пути, перемещения и скорости от выбора системы отсчёта.

Материальная точка

Во многих случаях размером тела можно пренебречь, так как размеры этого тела малы по сравнению с расстоянием, которое походит это тело, или по сравнению с расстоянием между этим телом и другими телами. Такое тело для упрощения расчетов условно можно считать материальной точкой, имеющей массу этого тела.

Материальная точка – это тело, размерами которого в данных условиях можно пренебречь.

Многократно упоминавшийся нами автомобиль можно принять за материальную точку относительно Земли. Но если человек перемещается внутри этого автомобиля, то пренебрегать размерами автомобиля уже нельзя.

Как правило, решая задачи по физике, рассматривают движение тела как движение материальной точки, и оперируют такими понятиями, как скорость материальной точки, ускорение материальной точки, импульс материальной точки, инерция материальной точки и т.п.

Система отсчёта

Материальная точка движется относительно других тел. Тело, по отношению к которому рассматривается данное механическое движение, называется телом отсчёта. Тело отсчёта выбирают произвольно в зависимости от решаемых задач.

С телом отсчёта связывается система координат, которая представляет из себя точку отсчёта (начало координат). Система координат имеет 1, 2 или 3 оси в зависимости от условий движения.

Положение точки на линии (1 ось), плоскости (2 оси) или в пространстве (3 оси) определяют соответственно одной, двумя или тремя координатами.

Для определения положения тела в пространстве в любой момент времени также необходимо задать начало отсчёта времени.

Система отсчёта – это система координат, тело отсчета, с которым связана система координат, и прибор для измерения времени. Относительно системы отсчёта и рассматривается движение тела. У одного и того же тела относительно разных тел отсчёта в разных системах координат могут быть совершенно различные координаты.

Траектория движения также зависит от выбора системы отсчёта.

Виды систем отсчёта могут быть различными, например, неподвижная система отсчёта, подвижная система отсчёта, инерциальная система отсчёта, неинерциальная система отсчёта.

Относительность движения и система отсчета в физике

Тело отсчета выбирают произвольно. Следует отметить, что движущееся тело и тело отсчета равноправны. Каждое из них при расчете движения в случае необходимости можно рассматривать или как тело отсчета, или как тело движущееся. Например, человек стоит на Земле и наблюдает, как по дороге едет автомобиль.

Человек неподвижен относительно Земли и считает Землю телом отсчета, самолет и автомобиль в этом случае тела движущиеся. Однако, пассажир автомобиля, который говорит, что дорога убегает из-под колес, тоже прав.

Он считает телом отсчета автомобиль (он неподвижен относительно автомобиля), Земля при этом – тело движущееся.

Чтобы фиксировать изменение положение тела в пространстве, с телом отсчета нужно связать систему координат. Система координат – это способ задания положения объекта в пространстве.

При решении физических задач наиболее распространенной является декартова прямоугольная система координат с тремя взаимно перпендикулярными прямолинейными осями – абсциссой (), ординатой () и аппликатой (). Масштабной единицей измерения длины в СИ является метр.

При ориентировании на местности пользуются полярной системой координат. По карте определяют расстояние до нужного населенного пункта. Направление движения определяют по азимуту, т.е. углу, который составляет нулевое направление с линией, соединяющей человека с нужным пунктом. Таким образом, в полярной системе координат координатами являются расстояние и угол .

В географии, астрономии и при расчетах движений спутников и космических кораблей положение всех тел определяется относительно центра Земли в сферической системе координат.

Для определения положения точки в пространстве в сферической системе координат задают расстояние до начала отсчета и углы и — углы, которые составляет радиус-вектор с плоскостью нулевого гринвичского меридиана (долгота) и плоскостью экватора (широта).

Система отсчета

Система координат, тело отсчета, с которым она связана, и прибор для измерения времени образуют систему отсчета, относительно которой рассматривается движение тела.

При решении любой задачи о движении прежде всего должна быть указана та система отсчета, в которой будет рассматриваться движение.

При рассмотрении движения относительно подвижной системы отсчета справедлив классический закон сложения скоростей: скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной.

Источник: http://ru.solverbook.com/spravochnik/mexanika/kinematika/otnositelnost-dvizheniya/

Оцените статью
exam-ans.ru
Добавить комментарий