Впервые термин «луч» использовал в 1833 году швейцарский учёный Якоб Штейнер. Для его определения потребуется на плоскости поставить точку. Из неё должна исходить часть прямой, которая состоит из множества точек, расположенных по одну сторону от первоначальной.
Само понятие «точка» считается абстрактным объектом, который не имеет высоты, радиуса, длины, сторон, угла. В задачах важно её местоположение на плоскости либо полуплоскости.
Луч в математике определение, форма и свойства
Трактовка понятий
На чертеже она обозначается заглавной латинской буквой. Чтобы различить несколько точек, на рисунке используется несколько букв. Можно вводить числовое обозначение. В отличие от луча, отрезок считается частью прямой, ограниченной двумя точками на концах. Множество точек образует линию, у которой нет толщины и ширины. На плоскости можно начертить следующие её виды:
- замкнутая (расположение двух точек в одной, когда совпадает начало и конец),
- разомкнутая (не соединены конечная и начальная точки),
- самопересекающаяся,
- нет пересечения,
- кривая,
- прямая (линия не искривляется, у нее нет начала и конца, она бесконечно продолжается в две стороны на разное расстояние).
Линии пересекаются, если имеют одну общую точку. Чтобы они были перпендикулярны друг другу, между ними должен образовываться угол в 90 градусов. При параллельности части прямой не могут скрещиваться.
К особым формам луча относится ломаная. Она состоит из последовательно соединенных отрезков (звенья) под углом, отличным от 180°. Смежные звенья находятся на разных прямых.
У ломаной есть вершины. Они могут обозначаться с помощью латинских заглавных букв. Их нельзя править на маленькие. Сама вершина считается точкой, откуда начинается одна ломаная и заканчивается другая. Основным примером замкнутой линии является многоугольник. Его стороны представлены в виде звеньев.
Описание лучей
В геометрических задачах встречаются дополнительные лучи. Чтобы их начертить, потребуется отобразить на плоскости прямую, разделённую точкой на две полупрямые. Каждая часть является дополнительной относительно другой. Свойства лучей:
- общее начало,
- направления в разные стороны,
- расположение на одной прямой.
Дополнительные лучи могут дополнять друг друга до прямой. Отдельно рассматриваются совпадающие лучи. Если их наложить друг на друга, они совпадут. Для них характерна равная длина.
Чтобы отметить лучи на рисунке, используются порядковые номера. Незамкнутый открытый луч состоит из точек, находящихся по одну сторону относительно проведённой линии. Для его обозначения используется строчная латинская буква либо две заглавные.
Одна точка является началом, а вторая размещается на самом луче. В основе такой фигуры находятся полупрямые. Если в условиях задачи дана линия, формула выглядит следующим образом: (АB). Отрезок записывается в квадратных скобках.
Принципы классификации
Так как луч является частью прямой, поэтому через любую его точку проводится множество прямых, но только через две несовпадающие проходит одна прямая. Луч можно изобразить в нескольких вариантах: пересечение, скрещивание и параллельность.
Чтобы задать луч на плоскости, используется линейное уравнение. Фигуры называются разными способами и с помощью знаков. Можно провести полупрямую «О». Её начальная точка считается исходной и другой не существует. Другой способ записи — использование нескольких букв в середине либо в иных частях линии.
Если в задаче дана прямая, её можно обозначить двумя буквами, размещёнными в разных её частях, к примеру, (АB).
Третий метод обозначения: точка «О» находится с некоторым отступом от начала. Центральную часть можно назвать буквой К. В таком случае весь луч будет называться ОК.
Если нужно начертить продолжение к прямой, понадобится отметить на чертеже линию и точку, которая будет считаться производной. С помощью последней фигуры делится первая на 2 линии, которые не пересекаются между собой. Чтобы обозначить продолжение, рисуется линия карандашом.
Она будет иметь общее начало с основополагающей, но не будет совпадать с ней. Из т. О проводится прямая, не располагающаяся на дополняющих, но имеющая с ними одно общее начало. На новом луче отмечается т. В. На продолжении лежит отрезок ОВ.
Неразвернутый угол является случаем луча. Если стороны первой фигуры представлены в виде дополнительных полупрямых одной прямой, тогда угол является развёрнутым. Его значение равняется 180 градусов. Если значение угла иное, тогда он неразвернутый.
Следует отличать геометрические лучи от световых. В математике фигура представлена в виде линии, у которой нет ничего общего с энергией. Для световых лучей характерно несконцентрированное направление, дефракция (переломанный). Но при сильном потоке света наблюдается их чёткое направление.
Аксиомы и доказательства
Свойства лучей определяются аксиомами. Положение 1: на любом луче от начала можно отложить отрезок определённой длины, и только один.
Доказательство: если на линии от начала А отложить 2 равных отрезка АВ и АС, тогда точки С и В совпадут. В и А не лежат на прямой, а находятся с одной стороны от неё. Если отрезок АВ не пересекает эту прямую, тогда множество точек, лежащих с единой стороны от прямой, называется полуплоскостью. При доказательстве положения 1 следует ориентироваться на определение луча.
Аксиома: прямая разделяет плоскость на 2 полуплоскости. Следствие: если D и С находятся в различных полуплоскостях от прямой а, тогда отрезок DC пересекает а. Из этого вытекает теорема: A, B, O, C расположены на прямой а таким образом, что А и В находятся с одной стороны от т. О, т. С и В — с одной стороны от О. При этом А и С размещены с одной стороны от О.
Доказательство: нужно провести через О прямую b, которая отлична от а. Она будет разбивать плоскость на 2 полуплоскости. На одной из них находится т. В. Так как отрезки BC и AB не пересекают прямую b, поэтому точки А и С находятся в одной полуплоскости с В. Отрезок АС не пересекает b. На нём не находится т. О. От неё по одну сторону размещены т. А и С.
Предположение: если O, A, B, C принадлежат прямой а, при этом А находится между В и О, тогда А лежит между О и С. По одну сторону от О находятся три точки А, B и C.
Доказательство: так как по условию т. А находится между О и В, поэтому А и В лежат по одну сторону от О. По второму условию В и С лежат по эту же сторону от О. Исходя из теоремы 1, А, В и С лежат по одну сторону от т. О.
Теорема: если O, A, B, C принадлежат одной линии а, т. А лежит между В и О, а т. В между О и С, тогда В находится между А и С.
Доказательство: выдвигается предположение, что из условия теоремы заключение не следует. Точка В не находится между А и С. По свойству взаиморасположения A, B, C, точки А и С лежат по одну сторону от В.
По предположению следует, что они лежат по одну сторону от О, либо A, C, O лежат по одну сторону от B. Это противоречит условию: О и С находятся по разные стороны от В, либо А и С размещены по иную сторону от В, в отличие от т. О.
Подобное противоречит условию принадлежности А отрезку ОВ. Такое противоречие показывает, что предположение о т. В, не лежащей между А и С, неверное. Следовательно, точка В находится между А и С, что доказывает теорему. При решении геометрических задач, связанных с плоскостью и фигурами на ней, учитываются основные теоремы, доказанные учеными за всю историю математики.
Что такое луч в математике и геометрии
Чаще всего этот вопрос задают в школах, на уроках геометрии, а также понятие достаточно популярно в оптике. Однако, как это часто бывает, слово имеет довольно много значений. Стоит подробнее остановиться на самых ключевых.
Для того, чтобы понять, что такое луч с точки зрения геометрии, нужно рассмотреть одно из фундаментальных понятий этой науки, а именно – прямую.
Дать определение этому термину достаточно трудно, так как оно является одним из исходных, и именно с помощью прямой объясняются другие различные слова. Существует довольно мало аксиом в этом вопросе. Тем не менее, прямую можно трактовать как линию, находящуюся между двумя точками.
Прямая имеет свои свойства, согласно евклидовой геометрии.
Через любую точку можно провести сколько угодно прямых, а вот через две несовпадающие точки – лишь одну. Прямые могут находиться лишь в трех состояниях – они могут пересекаться, быть параллельными друг другу, а также могут скрещиваться. Существует линейное уравнение, задающее прямую на плоскости.
Итак, стоит вернуться к понятию луча. Он является частью прямой. Если на такой линии поставить точку, то автоматически получится два луча, при этом они не будут иметь второй ограничивающей их точки. Таким образом, луч – это часть прямой, имеющая начало, но не имеющая конца.
Геометрическая оптика рассматривает понятие светового луча довольно схожим образом. Здесь он тоже будет являться линией, однако она будет использоваться световой энергией. Иначе говоря, световой луч – это небольшой пучок света.
Как и понятие прямой в геометрии, так и понятие луча в оптике является довольно базовым явлением. Однако, в отличие от геометрического луча, световой не имеет какого-то четкого направления, так как происходит дифракция. Однако, если свет очень большой, то расходимостью принято пренебрегать. В этом случае можно выделить четкое направление.
Помимо базовых терминов в точных науках, этим словом обозначают самые разнообразные объекты. Например, около семи спортивных клубов носили такое название, а некоторые из них существуют до сих пор.
Множество деревень, поселков и хуторов на территории России, Украины и Белоруссии тоже называются Лучами. От них не отстают и суда – причем в этом случае Луч является маркой пассажирских судов, а также целым классом яхт.
Эти яхты являются одноместными и используются для гонок. Часто их применяют в качестве обучающего снаряда для детей, однако на нем проводятся и соревнования.
Существуют и другие значения:
- Этим словом называются три российских спутника-ретранслятора.
- В Удмуртии и Предуралье выходит журнал с таким названием.
- Лучом назвали и объединение атомной промышленности.
- С таким названием есть часовой завод и обувная фабрика в Минске.
- Луч – это псевдоним чувашского писателя, официальное имя которого Григорий Васильевич Васильев.