Какое определение понятия информация?

В современных учебниках по информатике можно найти различные толкования этого термина: информация является сведениями или знаниями о чём-либо, информация является знаниями, которые возможно передавать, собирать, хранить, использовать, обрабатывать, информация в информатике является базовым понятием науки, так как информатика это наука об информации.

В информатике изучение данного понятия происходит с помощью главного инструмента компьютера. Давайте более подробно ознакомимся с тем, что собой представляет данное понятие в информатике.

Определение понятия

Что такое информация: классификация, способы получения, носителиЕсли перевести сам термин информация с латинского языка, то он будет означать изложение или сведение. В настоящее время наука до сих пор ищет общие свойства и закономерности, которые являются присущими информации, однако, данные в информатике являются неким интуитивным понятием, которое несет различные смыслы в различных сферах деятельности человека.

Несмотря на то что в настоящее время существует огромное количество определений данного термина, необходимо выделить наиболее общие и понятные из них. Данные являются отражением окружающего мира методом каких-то знаков и сигналов. Ценность сообщения, которую несут сведения, заключается в новых знаниях, содержащихся в данном сообщении.

Типы информации

Они могут отличаться в зависимости от способа восприятия. Данные могут восприниматься с помощью наших чувств. Способы получения информации:

  • Органы слуха,
  • Зрение,
  • Осязание,
  • Вкус,
  • Обоняние.

Кроме этого, сведения разделяют и относительно их формы. По форме они могут быть:

  • Текстовыми,
  • Числовыми,
  • Графическими,
  • Звуковыми.

Сюда также можно отнести и видеоинформацию.

Информация в информатике

Понятие данного термина в информатике имеет целый ряд свойств. К таким свойствам относятся следующие:

  • Достоверность,
  • Релевантность,
  • Полнота,
  • Эргономичность,
  • Актуальность,
  • Защищённость,
  • Доступность.

Информация является особым видом ресурсов, который обладает свойствами, характерными именно для него. К таким свойствам относятся следующие:

  • Стираемость,
  • Запоминаемость,
  • Преобразуемость,
  • Передаваемость,
  • Воспроизводимость.

Рассмотрим каждое из данных свойств более подробно:

  1. Запоминаемость является одним из самых главных свойств данных. Запоминаемую информацию принято называть макроскопической. При этом имеются в виду пространственные масштабы запоминающей ячейки, а также время запоминания. С макроскопическими данными люди имеют дело на реальной практике.
  2. Передача происходит с помощью специальных каналов связи, в том числе и с помехами. Передаваемость хорошо исследована на основе теории Шеннона. В этом случае имеется в виду немного другой аспект, заключающийся в способности сведений к их копированию, таким образом, она может быть запоминающейся другой макроскопической системой, одновременно с этим оставаясь тождественной самой себе. Становится очевидным, что при копировании количество данных не будет возрастать.
  3. Говоря о воспроизводимости сведений, необходимо отметить, что она тесно связывается с ее передаваемостью, но не относится к ее независимому базовому свойству. Если же под передаваемостью имеется в виду, что не стоит считать существенными пространственные отношения между отдельными частями системы, среди которых передаются данные, то воспроизводимость характеризуется неиссякаемостью и неистощаемостью сведений, то есть во время копирования сведений будет оставаться тождественной самой себе.
  4. Преобразуемостью называется фундаментальное свойство данных. Она подразумевает то, что сведения могут сами поменять форму и способ своего существования. Копируемость при этом является разновидностью преобразования сведений, но ее количество при этом не меняется. Говоря об общем случае, стоит отметить, что количество данных в процессе преобразования будет меняться, но не будет возрастать.
  5. Стираемость тоже относится к независимому свойству сведений. Стираемость связана с таким преобразованием данных, во время которого ее количество снижается или становится равным нулю.

Носители и сигналы

Информация будет в любом случае связана с материальным носителем. Такими носителями могут быть:

  • Любые материальные предметы в виде камня, бумаги и так далее,
  • Различные волны: звук, радиоволна, свет и так далее,
  • Вещества в разном состоянии: температура, концентрация молекул в жидком растворе и так далее.

Сигналом называется способ передачи данных. Сигнал представляет собой физический процесс, который имеет информационное значение. Сигналы могут быть дискретными или непрерывными. Дискретный сигнал может принимать только конечное число значений в конечном числе моментов времени.

Аналоговым сигналом называется тот сигнал, который непрерывно изменяется по амплитуде и по времени. Аналоговые сигналы, как правило, используются во время телефонной связи, радиовещания и телевидения.

Сигналы, которые несут текстовую или символическую информацию, являются дискретными.

Основные понятия информатики

Что такое информация: классификация, способы получения, носители

В информатику, как правило, включаются технические средства, математические методы, программные продукты, типовые алгоритмы и модели. Говоря о технических средствах, сюда можно отнести компьютеры и разнообразные периферийные устройства в виде мониторов, клавиатур, принтеров, модемов.

В состав технических средств ещё входят линии связи, средства оргтехники. Таким образом, можно сказать, что это те материальные ресурсы, которые способны обеспечить преобразования сведений, при этом главную роль в списке будет играть только компьютер.

В настоящее время информатика отличается довольно стремительным развитием. Уже сегодня наука о данных имеет целый ряд новых направлений: программирование, искусственный интеллект, кибернетика, информационные системы, теоретическая информация и вычислительная техника.

Само понятие информации в информатике является довольно новым в лексиконе человека. Содержание данного понятия можно назвать нечетким и размытым. Информатика связывается с данными и обработкой их на компьютерах. На поверхностном уровне может быть всё понятно, но если присмотреться получше, то вопрос становится очень сложным, чем кажется на самом деле.

Так как компьютеры в настоящее время являются очень распространенными, а человечество переживает так называемый информационный бум, азы информатики должны понимать все современные индивиды, которые хоть немного хотят шагать в ногу со временем.

Именно данные факторы стали основой того, что преподавание информатики было введено в школьную программу. Поэтому в настоящее время каждый школьник получает возможность освоить эту интересную, новую и необходимую науку.

Виды носителей информации, их классификация и характеристики

В эпоху становления человеческого общества людям хватало стен пещеры, чтобы зафиксировать нужную им информацию. Такая «база данных» целиком уместилась бы да флэш-карте размером в мегабайт.

Однако за последние несколько десятков тысяч лет объем информации, которой вынужден оперировать человек, существенно возрос.

Теперь для хранения данных широко используются дисковые накопители и облачные хранилища данных.

Считается, что история записи информации и ее хранения началась около 40 тыс. лет назад. Поверхности скал и стены пещер сохранили изображения представителей животного мира позднего палеолита. Гораздо позже в обиход вошли пластинки из глины.

На поверхности такого древнего «планшета» человек мог наносить изображения и делать записи посредством заостренной палочки. Когда глиняный состав высыхал, запись фиксировалась на носителе.

Недостаток глиняной формы хранения информации очевиден: такие таблички отличались хрупкостью и недолговечностью.

Примерно пять тысяч лет назад в Египте стали использовать более совершенный носитель информации – папирус.

Сведения заносили на особые листы, которые изготовлялись из специально обработанных стеблей растения.

Этот вид хранения данных был более совершенным: листы папируса легче глиняных табличек, писать на них гораздо удобнее. Данный вид хранения информации дожил в Европе до XI века новой эры.

В другой части света – в Южной Америке – хитроумные инки изобрели тем временем узелковое письмо. Информация в данном случае закреплялась при помощи узлов, которые в определенной последовательности завязывали на нити или веревке. Существовали целые «книги» из узелков, где фиксировались сведения о численности населения империи инков, о налоговых сборах, хозяйственной деятельности индейцев.

Впоследствии основным носителем информации на планете на несколько веков стала бумага. Ее применяли для печатания книг и средств массовой информации. В начале XIX века стали появляться первые перфокарты. Их делали из плотного картона.

Эти примитивные машинные носители информации стали широко использовать для механического счета. Они нашли применение, в частности, при проведении переписей населения, их использовали и для управления ткацкими станками.

Человечество вплотную приблизилось к технологическому прорыву, который произошел в XX веке. На смену механическим устройствам пришла электронная техника.

Что такое информация: классификация, способы получения, носители

Все материальные объекты способны нести в себе какую-либо информацию. Принято считать, что носители информации наделены вещественными свойствами и отражают определенные отношения между объектами действительности. Материальные свойства объектов определяются характеристиками веществ, из которых выполнены носители.

Свойства отношений находятся в зависимости от качественных особенностей процессов и полей, посредством которых носители информации проявляются в материальном мире.

В теории информационных систем принято подразделять носители информации по происхождению, форме и размеру. В самом простом случае носители информации делят на:

  • локальные (к примеру, жесткий диск персонального компьютера),
  • отчуждаемые (съемные дискеты и диски),
  • распределенные (ими могут считаться линии связи).

Последний вид (каналы связи) можно при определенных условиях считать как носителями информации, так и средой для ее передачи.

В самом общем смысле носителями информации могут считаться разные по своей форме объекты:

  • бумага (книги),
  • пластинки (фотопластинки, граммофонные пластинки),
  • пленки (фото-, кинопленка),
  • аудиокассеты,
  • микроформы (микрофильм, микрофиша),
  • видеокассеты,
  • компакт-диски.

Многие носители информации известны с древних времен. Это каменные плиты с нанесенными на них изображениями, глиняные таблички, папирус, пергамент, береста. Гораздо позже появились иные искусственные носители информации: бумага, различные виды пластмассы, фотографические, оптические и магнитные материалы.

Информация заносится на носитель посредством изменения каких-либо физических, механических или химических свойств рабочей среды.

Любое природное явление так или иначе связано с сохранением, преобразованием и передачей информации. Она может быть дискретной или непрерывной.

В самом общем смысле носитель информации – это некая физическая среда, которую можно использовать для регистрации изменений и накопления информации.

Требования к искусственным носителям информации:

  • высокая плотность записи,
  • возможность неоднократного использования,
  • большая скорость считывания информации,
  • надежность и долговечность хранения данных,
  • компактность.

Отдельная классификация разработана для носителей информации, применяемых в электронно-вычислительных комплексах. К таким носителям информации относят:

  • ленточные носители,
  • дисковые носители (магнитные, оптические, магнитооптические),
  • флэш-носители.

Такое деление носит условный характер и не является исчерпывающим. При помощи особых устройств на компьютерной технике можно работать с традиционными аудио- и видеокассетами.

Что такое информация: классификация, способы получения, носители

В свое время наибольшую популярность получили магнитные носители информации. Данные в них представлены в виде участков магнитного слоя, который наносится на поверхность физического носителя. Сам носитель может иметь вид ленты, карты, барабана или диска.

Информация на магнитном носителе сгруппирована в зоны с промежутками между ними: они необходимы для качественной записи и считывания данных.

Носители информации ленточного типа используются для резервного копирования и хранения данных. Они представляют собой магнитную ленту объемом до 60 Гб. Иногда такие носители имеют вид ленточных картриджей значительно большего объема.

Дисковые носители информации могут быть жесткими и гибкими, сменными и стационарными, магнитными и оптическими. Они имеют обычно форму дисков или дискет.

Магнитный диск имеет вид пластмассового или алюминиевого плоского круга, который покрыт магнитным слоем. Фиксация данных на таком объекте осуществляется путем магнитной записи. Магнитные диски бывают переносными (сменными) или несменными.

Гибкие магнитные диски (флоппи-диски) имеют объем 1,44 Мб. Они упакованы с особые пластмассовые корпуса. Иначе такие носители информации именуют дискетами. Назначение их – временное хранение информации и перенос данных с одного компьютера на другой.

Жесткий магнитный диск нужен для постоянного хранения данных, которые часто используются в работе. Такой носитель представляет собой пакет их сцепленных между собой нескольких дисков, заключенных в прочный герметичный корпус. В обиходе жесткий диск часто называют «винчестером». Емкость такого накопителя может достигать нескольких сотен Гб.

Магнитооптический диск – это носитель информации, помещенный в особый пластиковый конверт, называемый картриджем. Это универсальное и очень надежное вместилище данных. Его отличительная черта – высокая плотность хранимой информации.

Принцип записи данных на магнитный носитель основан на использовании свойств ферромагнетиков: они способны сохранять намагниченность после снятия действующего на них магнитного поля.

Магнитное поле создает соответствующая магнитная головка. В ходе записи двоичный код принимает форму электрического сигнала и подается на обмотку головки. Когда ток протекает через магнитную головку, вокруг нее формируется магнитное поле определенной напряженности. Под действием такого поля в сердечнике образуется магнитный поток. Его силовые линии замыкаются.

Магнитное поле взаимодействует с носителем информации и создает в нем состояние, которое характеризуется некоторой магнитной индукцией. Когда импульс тока прекращается, носитель сохраняет свое состояние намагниченности.

Чтобы воспроизвести запись, используют считывающую головку. Магнитное поле носителя замыкается через сердечник головки. Если носитель перемещается, изменяется магнитный поток. В считывающую головку поступает сигнал воспроизведения.

Одна из важных характеристик магнитного носителя информации – плотность записи. Она находится в прямой зависимости от свойств магнитного носителя, типа магнитной головки и ее конструкции.

Носители информации Информатика

Допечатные процессы предъявляют особые требования к регистрирующим средствам, использующимся для хранения информации. Такие требования являются следствием не только постоянных потребностей, связанных с увеличением объемов сохраняемых данных, обрабатываемых в процессе производства печатной продукции.

Память имеет исключительное значение для постоянного резервирования данных внутри сети рабочих станций, а также для безопасной пересылки и архивирования данных.

Несмотря на возросшие возможности передачи данных через сети или через Интернет, среды для сохранения данных будут продолжать играть важную роль в обмене информацией между заказчиком и исполнителем.

Благодаря новым технологиям и производственным процессам емкость носителей, предназначенных для хранения информации, постоянно увеличивается. Имеются предпосылки, что этот рост составит около 80% в год.

Суть увеличения объемов хранения данных включает, вероятно, совокупность следующих факторов: повышение плотности записи, числа дорожек и оптимальное использование поверхности носителя.

Супердиск с объемом памяти 120 Мб действительно соответствует данной задаче, несмотря на то, что по внешнему виду он является почти таким же, как гибкий 3,5-дюймовый диск. Однако супердиск по объему памяти превосходит последний почти в 83 раза. Сведения об объемах памяти различных носителей приведены в табл. 5.

Классификация носителей данных

Все имеющиеся в настоящее время носители информации могут подразделяться по различным признакам. В первую очередь, следует различать энергозависимые и энергонезависимые накопители информации.

Энергонезависимые накопители, используемые для архивирования и сохранения массивов данных, подразделяют:

  • по виду записи:– магнитные накопители (жесткий диск, гибкий диск, сменный диск),– магнитно-оптические системы, называемые также МО,
  • оптические, такие, как CD (Compact Disk, Read Only Memory) или DVD (Digital Versatile Disk),
  • по способам построения:– вращающаяся пластина или диск (как у жесткого диска, гибкого диска, сменного диска, CD, DVD или MО),– ленточные носители различных форматов,– накопители без подвижных частей (например, Flash Card, RAM (Random Access Memory), имеющие ограниченную область применения из-за относительно небольших объемов памяти по сравнению с вышеназванными носителями информации).

Если требуется быстрый доступ к информации, как, например, при выводе или передаче данных, то используются носители с вращающимся диском. Для архивирования, выполняемого периодически (Backup), наоборот, более предпочтительными являются ленточные носители.

Они имеют большие объемы памяти в сочетании с невысокой ценой, правда, при относительно невысоком быстродействии.

По назначению носители информации различаются на три группы:

  • распространение информации: носители с предварительно записанной информацией, такие как CD ROM или DVD-ROM,
  • архивирование: носители для одноразовой записи информации, такие как CD-R или DVD-R (R (record able) – для записи),
  • резервирование (Backup) или передача данных: носители с возможностью многоразовой записи информации, такие как дискеты, жесткий диск, MO, CD-RW (RW (rewritable) – перезаписываемые и ленты.

CD и DVD (ROM, R, RW)

CD-ROM был первоначально создан для того, чтобы распространять большие объемы информации (например, музыку и т.д.) за умеренную плату. Между тем он стал наиболее используемым носителем информации и для меньших объемов данных, например, при личном пользовании.

В обозримом будущем CD-ROM могут быть заменены на DVD-ROM. DVD имеет емкость памяти от 4,7 до 17 GB. DVD-ROM может использоваться для распространения программных продуктов, мультимедиа, банков данных и для записи художественных фильмов.

Увеличение объема памяти здесь стало возможным благодаря технологии двойного слоя. Она позволяет наносить на верхнюю и нижнюю стороны диска по два накопительных слоя, которые разделяются полуотражающим промежуточным слоем.

При считывании информации лазер прыгает между обоими накопительными слоями.

Компакт-диск, кратко называемый CD-R (или, соответственно, DVD-R), представляет собой оптическую пластину для одноразовой записи в формате 5,25 дюйма с большой плотностью.

Запись на такой диск может быть произведена только один раз в специальном записывающем устройстве. После этого информацию можно считывать посредством обычного дисковода CD-ROM.

Типичная область применения – это передача информации в ограниченном количестве.

Более гибким, но менее распространенным является CD-RW (Rewritable). Этот сменный носитель информации может быть перезаписан заново до 1000 раз.

Нанесенный слой при записи в результате термооптического процесса изменяет свою структуру с кристаллической на аморфную. В результате на этих местах изменяются отражающие свойства несущего слоя.

Интенсивность излучения, соответствующая отражению от светлых или темных участков, преобразуется в бинарные числа 1 или 0.

Сменные накопители

Работа сменного накопителя основывается на использовании магнитных слоев, служащих для многократной записи информации.

Сменные диски SyQuest.

Производитель SyQuest, начав с выпуска дисков емкостью 44 Мб, довел со временем их память до 1,5 Гб. При этом увеличение памяти потребовало применения и нового дисковода. Эти сменные магнитные диски стали часто используемыми носителями данных в допечатных процессах.

Картриджи данных. Начиная с 70-х годов эти магнитные накопители относятся к основным средам для резервирования данных. Главным образом они используются для резервного копирования данных на жестком диске персональных компьютеров (PC).

Часто при резервировании в сети система автоматически подключает несколько картриджей для обработки накопителей со сменными дисками. Картриджи выпускаются в форматах 5,25 и 3,5 дюйма.

Дисководы, предлагаемые различными изготовителями, бывают встроенными или присоединенными к персональному компьютеру. По сравнению с гибкими дисками скорость пересылки данных у картриджей выше, однако она меньше, чем у жестких дисков.

Магнитный ленточный носитель данных (ширина ленты 4 или 8 мм). Среди множества четырех- и восьмимиллиметровых ленточных носителей информации имеются такие, которые в соответствии с новыми разработками отличаются более надежной защитой данных.

Это свойство достигнуто благодаря тому, что уменьшено воздействие на подобные ленты статического электричества. Четырехмиллиметровые ленточные носители информации имеют емкость до 4 Гб. У восьмимиллиметровых носителей – 5 Гб. Они используются в банках данных, когда на магнитных лентах должны автоматически сохраняться большие массивы информации.

SuperDisk, ZIP, JAZ. Гибкий диск 3,5 дюйма является наиболее распространенным накопительным носителем в мире. В настоящее время в разработке находятся две системы: технология ZIP фирмы Iomega и SuperDisk (ранее называвшийся LS-120) фирмы Imation.

SuperDisk предоставляет возможность размещения информации объемом 120 Мб и почти не отличается внешне от традиционной 3,5-дюймовой дискеты. Носитель информации недорогой и совместим в обе стороны, т.е. на новых дисководах можно также считывать и записывать классические дискеты 1,44 Мб.

Дискеты ZIP фирмы Iomega имеют объем от 100 до 250 Мб и по цене сопоставимы с носителем SuperDisk.

Дискеты ZIP в настоящее время очень распространены в издательском деле, из чего можно сделать заключение о соответствующей потребности в сменных носителях такого вида.

ZIP не совместим в обе стороны, а дисковод может обрабатывать только носители ZIP. Время доступа к информации у диска ZIP меньше, чем у диска SuperDisk.

Дискеты 3,5 дюйма JAZ фирмы Iomega имеют объем хранения информации до 2 Гб. Магнитооптический диск (CD-MO). Магнитооптические носители, кратко называемые MO, получили широкое распространение. В пользу этой технологии однозначно говорит объем памяти: 640 Мб на носителе 3,5 дюйма и 2,6 Гб на носителе 5,25 дюйма.

Их развитие идет быстро. Уже сегодня такие изготовители, как Sony и Philips, говорят об объеме 2,6 Гб у носителей 3,5 дюйма и 10,4 Гб у носителей 5,25 дюймо вого формата. Дисководы MO достигают скорости передачи данных 4 Мб/с, а среднее время доступа составляет менее 25 мс.

Размещение и запись данных осуществляются посредством лазера.

Жесткие диски. Наконец следует упомянуть жесткие диски, которые входят в стандартную комплектацию практически каждого компьютера. Объем памяти этих носителей информации постоянно увеличивается и в последнее время достиг около 80 Гб для 31/2’’ диска.

Классификация носителей документированной информации

Носители информации самым тесным образом связаны не только со способами и средствами документирования, но и с развитием технической мысли. Отсюда – непрерывная эволюция типов и видов материальных носителей.

Появление письменности – одной из первых информационных технологий – стимулировало поиски и изобретение специальных материалов для письма.

Однако на первых порах человек использовал для этой цели наиболее доступные материалы, которые можно было без особых усилий найти в окружающей природной среде: пальмовые листья, раковины, древесная кора, черепаховые щитки, кости, камень, бамбук и т.д. Так было первоначально, затем материалы начали усовершенствоваться.

В разных странах использовались свои носители информации, в некоторых случаях они были похожи или даже одинаковы. Люди стали использовать деревянные дощечки, покрытые слоем воска, металлические (бронзовые либо свинцовые) таблицы, медные пластины, бронзовые вазы, шелк, берёсту, глину, папирус, кожу и т.д.

Позднее появилась бумага. Бумажное производство совершенствовалось и постепенно механизировалось. Важнейшим шагом в развитии бумагоделательного производства стало изготовление бумаги из древесины.

Начиная с XIX столетия, в связи с изобретением новых способов и средств документирования (фото-, кино-, аудиодокументирование и др.), широкое распространение получили многие принципиально новые носители документированной информации.

В зависимости от качественных характеристик, а также от способа документирования, их можно классифицировать следующим образом:

  • бумажные носители,
  • фотографические носители,
  • носители механической звукозаписи,
  • магнитные носители,
  • оптические (лазерные) диски и другие перспективные носители информации.

Важнейшим материальным носителем информации по-прежнему пока остаётся бумага.

При выборе бумаги для документирования необходимо учитывать свойства бумаги, обусловленные технологическим процессом её производства, композиционным составом, степенью отделки поверхности и т.п.

Любая бумага, изготовленная традиционным способом, характеризуется определёнными свойствами, которые необходимо принимать во внимание в процессе документирования. Большое значение в документоведении и документационном обеспечении управления имеют форматы бумаги.

До недавнего времени широко использовались картонные перфорационные носители цифровой кодированной информации – перфокарты. На основе машинных перфокарт изготавливались апертурные карты – карты с вмонтированным кадром микрофильма или отрезком неперфорированной плёнки.

Фотоматериалы представляют собой гибкие плёнки, пластинки, бумаги, ткани. Они представляют собой по существу многослойные полимерные системы.

Киноплёнка является фотографическим материалом на гибкой прозрачной подложке, имеющей с одной или обоих краёв отверстия – перфорации.

По сравнению с фотоплёнкой кинолента обычно состоит из большего количества слоёв. Киноплёнки бывают чёрно-белые и цветные.

За более чем вековую историю механической звукозаписи неоднократно менялись и материалы, и форма носителей звуковой информации. Первоначально это были фонографические валики, в последствии вытесненные граммофонными пластинками.

Самым первым носителем магнитной записи, который использовался в аппаратах Поульсена на рубеже XIX–XX вв., была стальная проволока. В начале ушедшего столетия для этих целей использовалась также стальная катаная лента.

Тогда же был выдан и первый патент на магнитный диск. Лишь со второй половины 1920-х гг., когда была изобретена порошковая магнитная лента, началось широкомасштабное применение магнитной записи.

С начала 1960-х гг. широкое применение получили магнитные диски – прежде всего в запоминающих устройствах ЭВМ. Магнитные диски бывают жёсткими и гибкими, сменными и встроенными в персональный компьютер.

Широкое применение, прежде всего в банковских системах, нашли так называемые пластиковые карты, представляющие собой устройства для магнитного способа хранения информации и управления данными. Для записи звука в цифровых диктофонах используются, в частности, миникарты, имеющие подобие дискет.

Технологии и материальные носители магнитной записи постоянно совершенствуются. Так, наблюдается тенденция к увеличению плотности записи информации на магнитных дисках при уменьшении его размеров и снижении среднего времени доступа к информации.

Начиная с 1980-х годов, всё более широкое распространение получают оптические (лазерные) диски. Это пластиковые или алюминиевые диски, предназначенные для записи и воспроизведения информации при помощи лазерного луча. Широкое применение в качестве носителя информации получили также магнитооптические компакт-диски типа RW.

Во второй половине 1990-х годов появились новые, весьма перспективные носители документированной информации – цифровые универсальные видеодиски DVD. В настоящее время оптические (лазерные) диски являются наиболее надёжными материальными носителями документированной информации, записанной цифровым способом.

Передача документированной информации во времени и пространстве непосредственно связана с физическими характеристиками её материального носителя.

Документы, будучи массовым общественным продуктом, отличаются сравнительно низкой долговечностью.

Во время своего функционирования в оперативной среде и, особенно, при хранении они подвергаются многочисленным негативным воздействиям вследствие перепадов температуры, влажности, под влиянием света, биологических процессов и т.д.

Однако, решая проблему долговечности, человек сразу же вынужден был заниматься и другой проблемой, заключавшейся в том, что долговечные носители информации были, как правило, и более дорогостоящими.

Так, книги на пергаменте нередко приравнивались по цене к каменному дому или даже к целому поместью, вносились в завещание наряду с другим имуществом, а в библиотеках в целях сохранности приковывались цепями к стене.

Поэтому постоянно приходилось искать оптимальное соотношение между долговечностью материального носителя информации и его стоимостью. Эта проблема до сих пор остаётся весьма важной и актуальной.

Носитель информации это Что такое Носитель информации?

Носи́тель информа́ции (информацио́нный носи́тель) — любой материальный объект или среда[неизвестный термин] , содержащий (несущий) информацию (И), способный достаточно длительное время сохранять в своей структуре занесённую в/на него информацию — камень, дерево, бумага, металл, пластмассы, кремний (и другие виды полупроводников), лента с намагниченным слоем (в бобинах и кассетах), пластик со специальными свойствами (для оптической записи И — CD, DVD и т. д.), ЭМИ (электромагнитное излучение) и т. д. и т. п.

Носителем информации может быть любой объект, с которого возможно (но не обязательно) чтение имеющейся (записанной) информации.

Зачастую сам носитель информации помещается в защитную оболочку, повышающую его сохранность и, соответственно, надёжность сохранения И (к примеру: бумажные листы — в обложку, микросхему памяти — в пластик (смарт-карта), магнитную ленту — в корпус и т. д.).

Носители информации в быту, науке (библиотеки), технике (скажем, для нужд связи), общественной жизни (СМИ) применяются для:

Классификация носителей

По происхождению:

  • естественные (свет звёзд, несущий информацию о химическом содержании их атмосфер, кости динозавров, несущие информацию об их размерах, метеориты)
  • искусственные (лист бумаги с пробитыми по определённому правилу отверстиями, несущий закодированный текст, радиоволны, излучённые антенной станции дальней космической связи, несущие команды для космического робота)

По основному назначению:

  • основные: источник информации (источник и т.п.)и получатель информации (получатель и т.п.),
  • промежуточные (вспомогательные и т.п.): линии связи и их элементы, включая антенно-фидерные устройства и элементы, преобразователи (акусто-электрические, электроакустические, электромагнитные и т.п.),
  • функциональные, как санкционированные элементы систем и линий связи,
  • паразитные, как несанкционированные элементы систем и линий связи, которые могут быть элементами каналов утечки информации,
  • общего (широкого) назначения (скажем, бумага),
  • специализированные (например — только для цифровой записи),

По количеству циклов записи:

  • для однократной записи,
  • для многократной записи,

По долговечности:

  • для долговременного хранения (прекращение выполнения функции носителя обусловлено обстоятельствами случайными),
  • для кратковременного хранения (прекращение функции обусловлено процессами закономерными, приводящими к неизбежной деградации носителя),

В общем случае границы между этими разновидностями носителей довольно расплывчаты и могут варьироваться в зависимости от ситуации и внешних условий.

Основные материалы

Также ранее имели распространение: обожжённая глина, камень, кость, древесина, пергамент, берёста, папирус, воск, ткань и др.

Для внесения изменений в структуру материала носителя используются различные виды воздействия:

Электронные носители

К электронным носителям относят носители для однократной или многократной записи (обычно цифровой) электрическим способом: CD-ROM, DVD-ROM, полупроводниковые (флеш-память и т. п.), дискеты.

Имеют значительное преимущество перед бумажными (листы, газеты, журналы) по объёму и удельной стоимости.

Для хранения и предоставления оперативной (не долговременного хранения) информации — имеют подавляющее преимущество, также имеются значительные возможности по предоставлению И в удобном потребителю виде (форматирование, сортировка).

Недостаток — малый размер экрана (или значительный вес) и хрупкость устройств считывания, зависимость от источников электропитания.

В настоящее время электронные носители активно вытесняют бумажные, во всех отраслях жизни, что приводит к значительному сбережению древесины. Минусом их является то, что для считывания И для каждого типа и формата носителя необходимо соответствующее ему устройство считывания.

Устройства хранения

Носитель, в совокупности с механизмом для записи/считывания на него информации (устройством считывания, считывающим устройством), называется устройством хранения информации (также — накопитель информации, если оно предусматривает дозапись поступающей к уже имеющейся). Эти устройства могут быть основаны на самых разных физических принципах записи.

В некоторых случаях (для гарантии считывания, при редкости носителя и т. п.) носитель информации доставляется потребителю вместе с запоминающими устройством для его считывания.

История

Необходимость обмена информацией, сохранения письменных свидетельств о своей жизни и т. п. существовала у человека всегда. За всю историю человечества было перепробовано множество носителей информации. Так как носитель обладает рядом параметров, эволюция носителя информации определялась тем, какие требования к нему предъявлялись.

Древние времена

Древние люди на скалах изображали зверей, на которых они охотились. Однако угольные, глиняные, меловые рисунки смывало дождём, и для увеличения надёжности хранения информации первобытные художники стали выбивать силуэты животных на скалах острым камнем[1].

Хотя камень повысил сохранность информации, скорость её записи и передача оставляли желать лучшего.

Человек начал использовать для записи глину, которая имела свойства камня (сохранность информации), а её пластичность, удобство записи позволяла повысить эффективность записи.

Возможность эффективной записи способствует появлению письменности.

Более пяти тысяч лет назад появляется (достижение шумерской цивилизации, территория современного Ирака) письменность на глине (уже не рисунки, а похожие на буквы значки и пиктограммы).

Шумеры выдавливали знаки на табличках из сырой глины заострённой «клином» тростниковой палочкой (отсюда и название — клинопись)[1]. В ящиках («папках») хранились большие документы из десятков глиняных «страниц».

Глина была тяжела для больших текстов, потребность в которых возрастала. Поэтому на смену ей должен был появиться другой носитель

Египет: папирус

В начале третьего тысячелетия до н. э. в Египте появляется новый носитель, обладающий улучшенными некоторыми параметрами по сравнению с глиняными табличками. Там научились делать почти настоящую бумагу из папируса (высокого травянистого растения).

От слова «папирус» произошло название бумаги в некоторых языках: фр. papier — во французском и немецком, англ. paper — в английском, исп. papel — в испанском, белор. папера — в белорусском.

Пучок листьев папируса похож на лучи солнца (бог Ра), срез трёхгранного стебля имеет форму пирамиды, поэтому растение считалось царским[1].

Недостатком данного носителя являлось то, что со временем он темнел и ломался. Дополнительным недостатком стало то, что египтяне ввели запрет на вывоз папируса за границу.

Азия

Недостатки носителей информации (глина, папирус, воск) стимулировали поиск новых носителей. На этот раз сработал принцип «всё новое — хорошо забытое старое»: в Персии для письма издревле использовался дефтер — высушенные шкуры животных (в турецком и родственных ему языках слово «дефтер» и сейчас означает тетрадь), о чём вспомнили греки.

Жители греческого города Пергам (первыми переняли древнюю технологию) усовершенствовали процесс выделки шкур и во II веке до н. э. начали производство пергамента[1].

Достоинства нового носителя — высокая надёжность хранения информации (прочность, долговечность, не темнел, не пересыхал, не трескался, не ломался), многоразовость (например, в сохранившемся молитвеннике Х века учёные обнаружили несколько слоёв записей, сделанных вдоль и поперёк, стёртых и зачищенных, а с помощью рентгена там обнаружился древнейший трактат Архимеда[1]). Книги на пергаменте — палимпсесты (от греч. παλίμψηστον — рукопись, писанная на пергаменте по смытому или соскобленному тексту).

Как и в других странах, в Юго-Восточной Азии испробовали множество разных способов записи и сохранения информации:

  • выжигание на узких бамбуковых пластинах со скреплением шнурами в «бамбуковые книги» (недостаток — занимают много места, низкая износостойкость шнуров),
  • письмо на:
  • шёлке (недостаток — дороговизна шёлка),
  • сшиваемые в «книгу» листья пальм (бумажный лист современной книги называется так в память о своём пальмовом прототипе[1]).

Из-за недостатков предыдущих носителей китайский император Лю Чжао приказал найти им достойную замену, и один из чиновников (Цай Лунь) в 105 году н. э.

разработал способ производства бумаги (который не сильно изменился и по сию пору) из древесных волокон, соломы, травы, моха, тряпья, пакли, растительных отходов и т. п.

Некоторые историки утверждают, что Цай Лунь подсмотрел процесс изготовления бумаги у бумажной осы (строит гнездо из ею пережёванных и смоченных клейкой слюной волокон древесины). Однако сейчас найдены свидетельства в пользу того, что бумагу начали делать ещё раньше.

Европа

На территории Европы высокоразвитые народы (греки и римляне) нащупывали свои способы записи. Сменяются множество различных носителей: свинцовые листы, костяные пластинки и т. д.

Начиная с VII века до н. э. запись производится острой палочкой — стилусом (как и на глине) на деревянных дощечках, покрытых слоем податливого воска (т. н. восковые таблички).

Стирание информации (ещё одно преимущество данного носителя) производилось обратным тупым концом стилуса. Скрепляли такие дощечки по четыре штуки (отсюда и слово «тетрадь», так как др.-греч. τετράς в переводе с греческого — четыре).

Однако на воске надписи недолговечны, и проблема сохранения записей была весьма актуальной.

Америка

В XI—XVI веках коренные народы Южной Америки придумали узелковое письмо «кипу» (quipu в переводе с языка индейцев кечуа — узел)[1]. Из верёвок (к ним привязывали ряды шнурков) составлялись «сообщения». Тип, число узелков, цвета и количества нитей, их расположения и переплетения представлял собой «кодировку» («алфавит») кипу.

Нанизанными на шнуры небольшими раковинами кодировали свои сообщения индейские племена Северной Америки. Этот вид письменности назывался «вампум» — от индейского слова wampam (сокращённое от wampumpeag) — белые бусы[1]. Переплетения шнуров образовывали полоску, которую обычно носили как пояс.

Комбинацией цветных ракушек и рисунков на них могли составляться целые послания.

Древняя Русь

Как носитель использовалась берёста (верхний слой берёзовой коры). Буквы на ней прорезывали писалом (костяная или металлическая палочка).

К концу XVI века на Руси появляется своя бумага (в русский язык слово «бумага» пришло скорее всего из итальянского, bambagia — хлопок).

Средневековье

В античном мире и Средневековье восковые таблички использовались в качестве записных книжек, для хозяйственных пометок и для обучения детей письму.

Современность

Сейчас люди используют компьютеры для обработки и хранения информации.

Носители информации

Носитель информации (информационный носитель) – любой материальный объект, используемый человеком для хранения информации. Это может быть, например, камень, дерево, бумага, металл, пластмассы, кремний (и другие виды полупроводников), лента с намагниченным слоем (в бобинах и кассетах), фотоматериал, пластик со специальными свойствами (напр., в оптических дисках) и т. д., и т. п.

Носителем информации может быть любой объект, с которого возможно чтение (считывание) имеющейся на нём информации.

Носители информации применяются для:

  • записи,
  • хранения,
  • чтения,
  • передачи (распространения) информации.

Зачастую сам носитель информации помещается в защитную оболочку, повышающую его сохранность и, соответственно, надёжность сохранения информации (например, бумажные листы помещают в обложку, микросхему памяти – в пластик (смарт-карта), магнитную ленту – в корпус и т. д.).

К электронным носителям относят носители для однократной или многократной записи (обычно цифровой) электрическим способом:

  • оптические диски (CD-ROM, DVD-ROM, Blu-ray Disc),
  • полупроводниковые (флеш-память, дискеты и т. п.),
  • CD-диски (CD – Compact Disk, компакт диск), на который может быть записано до 700 Мбайт информации,
  • DVD-диски (DVD – Digital Versatile Disk, цифровой универсальный диск), которые имеют значительно большую информационную ёмкость (4,7 Гбайт), так как оптические дорожки на них имеют меньшую толщину и размещены более плотно,
  • диски HR DVD и Blu-ray, информационная ёмкость которых в 3–5 раз превосходит информационную ёмкость DVD-дисков за счёт использования синего лазера с длиной волны 405 нанометров.

Электронные носители имеют значительные преимущества перед бумажными (бумажные листы, газеты, журналы):

  • по объёму (размеру) хранимой информации,
  • по удельной стоимости хранения,
  • по экономичности и оперативности предоставления актуальной (предназначенной для недолговременного хранения) информации,
  • по возможности предоставления информации в виде, удобном потребителю (форматирование, сортировка).

Есть и недостатки:

  • хрупкость устройств считывания,
  • вес (масса) (в некоторых случаях),
  • зависимость от источников электропитания,
  • необходимость наличия устройства считывания/записи для каждого типа и формата носителя.

Накопитель на жёстких магнитных дисках или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск – запоминающее устройство (устройство хранения информации), основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие пластины, покрытые слоем ферромагнитного материала – магнитные диски. В НЖМД используется одна или несколько пластин на одной оси.

Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства.

При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной («парковочной») зоне, где исключён их нештатный контакт с поверхностью дисков.

Также, в отличие от гибкого диска, носитель информации обычно совмещают с накопителем, приводом и блоком электроники. Такие жёсткие диски часто используются в качестве несъёмного носителя информации.

Оптические (лазерные) диски в настоящее время являются наиболее популярными носителями информации. В них используется оптический принцип записи и считывания информации с помощью лазерного луча.

DVD-диски могут быть двухслойными (емкость 8,5 Гбайт), при этом оба слоя имеют отражающую поверхность, несущую информацию. Кроме того, информационная емкость DVD-дисков может быть еще удвоена (до 17 Гбайт), так как информация может быть записана на двух сторонах.

Накопители оптических дисков делятся на три вида:

  • без возможности записи CD-ROM и DVD-ROM (ROM – Read Only Memory, память только для чтения). На дисках CD-ROM и DVD-ROM хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна,
  • с однократной записью и многократным чтением – CD-R и DVD±R (R – recordable, записываемый). На дисках CD-R и DVD±R информация может быть записана, но только один раз,
  • с возможностью перезаписи – CD-RW и DVD±RW (RW – Rewritable, перезаписываемый). На дисках CD-RW и DVD±RW информация может быть записана и стерта многократно.

Основные характеристики оптических дисководов:

  • емкость диска (CD – до 700 Мбайт, DVD – до 17 Гбайт)
  • скорость передачи данных от носителя в оперативную память – измеряется в долях, кратных скорости 150 Кбайт/сек для CD-дисководов,
  • время доступа – время, нужное для поиска информации на диске, измеряется в миллисекундах (для CD 80–400 мс).

В настоящее время широкое распространение получили 52х-скоростные CD-дисководы – до 7,8 Мбайт/сек. Запись CD-RW дисков производится на меньшей скорости (например, 32х-кратной). Поэтому CD-дисководы маркируются тремя числами «скорость чтения х скорость записи CD-R х скорость записи CD-RW» (например, «52х52х32»). DVD-дисководы также маркируются тремя числами (например, «16х8х6»).

При соблюдении правил хранения (хранение в футлярах в вертикальном положении) и эксплуатации (без нанесения царапин и загрязнений) оптические носители могут сохранять информацию в течение десятков лет.

Флеш-память (flash memory) – относится к полупроводникам электрически перепрограммируемой памяти (EEPROM).

Благодаря техническим решениям, невысокой стоимости, большому объёму, низкому энергопотреблению, высокой скорости работы, компактности и механической прочности, флеш-память встраивают в цифровые портативные устройства и носители информации.

Основное достоинство этого устройства в том, что оно энергонезависимое и ему не нужно электричество для хранения данных. Всю хранящуюся информацию во флэш-памяти можно считать бесконечное количество раз, а вот количество полных циклов записи, к сожалению, ограничено.

У флеш-памяти есть как свои преимущества перед другими накопителями (жесткие диски и оптические накопители), так и свои недостатки, с которыми вы можете познакомиться из таблицы, расположенной ниже.

Тип накопителя Преимущества Недостатки
Жесткий диск Большой объём хранимой информации. Высокая скорость работы. Дешевизна хранения данных (в расчете на 1 Мбайт) Большие габариты. Чувствительность к вибрации. Шум. Тепловыделение
Оптический диск Удобство транспортировки. Дешевизна хранения информации. Возможность тиражирования Небольшой объём. Нужно считывающее устройство. Ограничения при операциях (чтение, запись). Невысокая скорость работы. Чувствительность к вибрации. Шум
Флеш-память Высокая скорость доступа к данным. Экономное энергопотребление. Устойчивость к вибрациям. Удобство подключения к компьютеру. Компактные размеры Ограниченное количество циклов записи
Оцените статью
exam-ans.ru
Добавить комментарий